1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
cudaError_t addWithCuda( int *c, const int *a, const int *b, unsigned int size);
__global__ void addKernel( int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 };
// Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "addWithCuda failed!" );
return 1;
}
printf ( "{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n" ,
c[0], c[1], c[2], c[3], c[4]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaDeviceReset failed!" );
return 1;
}
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda( int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?" );
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc(( void **)&dev_c, size * sizeof ( int ));
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!" );
goto Error;
}
cudaStatus = cudaMalloc(( void **)&dev_a, size * sizeof ( int ));
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!" );
goto Error;
}
cudaStatus = cudaMalloc(( void **)&dev_b, size * sizeof ( int ));
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!" );
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof ( int ), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMemcpy failed!" );
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof ( int ), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMemcpy failed!" );
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "addKernel launch failed: %s\n" , cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n" , cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof ( int ), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMemcpy failed!" );
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
|