使用Python解析MNIST数据集(IDX文件格式)

 
  

前言

最近在学习tensorflow,要使用到LeCun大神的MNIST手写数字数据集,直接从官网上下载了4个压缩包:

MNIST数据集

解压后发现里面每个压缩包里有一个idx-ubyte文件,没有图片文件在里面。回去仔细看了一下官网后发现原来这是IDX文件格式,是一种用来存储向量与多维度矩阵的文件格式。

IDX文件格式

官网上的介绍如下:

THE IDX FILE FORMAT

the IDX file format is a simple format for vectors and multidimensional matrices of various numerical types.

The basic format is

magic number
size in dimension 0
size in dimension 1
size in dimension 2
.....
size in dimension N
data

The magic number is an integer (MSB first). The first 2 bytes are always 0.

The third byte codes the type of the data:

0x08: unsigned byte
0x09: signed byte
0x0B: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0x0E: double (8 bytes)

The 4-th byte codes the number of dimensions of the vector/matrix: 1 for vectors, 2 for matrices....

The sizes in each dimension are 4-byte integers (MSB first, high endian, like in most non-Intel processors).

The data is stored like in a C array, i.e. the index in the last dimension changes the fastest.

解析脚本

根据以上解析规则,我使用了Python里的struct模块对文件进行读写(如果不熟悉struct模块的可以看我的另一篇博客文章《Python中对字节流/二进制流的操作:struct模块简易使用教程》)。IDX文件的解析通用接口如下:


# 解析idx1格式
def decode_idx1_ubyte(idx1_ubyte_file):
    """
    解析idx1文件的通用函数
    :param idx1_ubyte_file: idx1文件路径
    :return: np.array类型对象
    """
    return data

def decode_idx3_ubyte(idx3_ubyte_file):
    """
    解析idx3文件的通用函数
    :param idx3_ubyte_file: idx3文件路径
    :return: np.array类型对象
    """
    return data

针对MNIST数据集的解析脚本如下

# encoding: utf-8
"""
@author: monitor1379 
@contact: [email protected]
@site: www.monitor1379.com

@version: 1.0
@license: Apache Licence
@file: mnist_decoder.py
@time: 2016/8/16 20:03

对MNIST手写数字数据文件转换为bmp图片文件格式。
数据集下载地址为http://yann.lecun.com/exdb/mnist。
相关格式转换见官网以及代码注释。

========================
关于IDX文件格式的解析规则:
========================
THE IDX FILE FORMAT

the IDX file format is a simple format for vectors and multidimensional matrices of various numerical types.
The basic format is

magic number
size in dimension 0
size in dimension 1
size in dimension 2
.....
size in dimension N
data

The magic number is an integer (MSB first). The first 2 bytes are always 0.

The third byte codes the type of the data:
0x08: unsigned byte
0x09: signed byte
0x0B: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0x0E: double (8 bytes)

The 4-th byte codes the number of dimensions of the vector/matrix: 1 for vectors, 2 for matrices....

The sizes in each dimension are 4-byte integers (MSB first, high endian, like in most non-Intel processors).

The data is stored like in a C array, i.e. the index in the last dimension changes the fastest.
"""

import numpy as np
import struct
import matplotlib.pyplot as plt

# 训练集文件
train_images_idx3_ubyte_file = '../../data/mnist/bin/train-images.idx3-ubyte'
# 训练集标签文件
train_labels_idx1_ubyte_file = '../../data/mnist/bin/train-labels.idx1-ubyte'

# 测试集文件
test_images_idx3_ubyte_file = '../../data/mnist/bin/t10k-images.idx3-ubyte'
# 测试集标签文件
test_labels_idx1_ubyte_file = '../../data/mnist/bin/t10k-labels.idx1-ubyte'


def decode_idx3_ubyte(idx3_ubyte_file):
    """
    解析idx3文件的通用函数
    :param idx3_ubyte_file: idx3文件路径
    :return: 数据集
    """
    # 读取二进制数据
    bin_data = open(idx3_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数、图片数量、每张图片高、每张图片宽
    offset = 0
    fmt_header = '>iiii'
    magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, offset)
    print '魔数:%d, 图片数量: %d张, 图片大小: %d*%d' % (magic_number, num_images, num_rows, num_cols)

    # 解析数据集
    image_size = num_rows * num_cols
    offset += struct.calcsize(fmt_header)
    fmt_image = '>' + str(image_size) + 'B'
    images = np.empty((num_images, num_rows, num_cols))
    for i in range(num_images):
        if (i + 1) % 10000 == 0:
            print '已解析 %d' % (i + 1) + '张'
        images[i] = np.array(struct.unpack_from(fmt_image, bin_data, offset)).reshape((num_rows, num_cols))
        offset += struct.calcsize(fmt_image)
    return images


def decode_idx1_ubyte(idx1_ubyte_file):
    """
    解析idx1文件的通用函数
    :param idx1_ubyte_file: idx1文件路径
    :return: 数据集
    """
    # 读取二进制数据
    bin_data = open(idx1_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数和标签数
    offset = 0
    fmt_header = '>ii'
    magic_number, num_images = struct.unpack_from(fmt_header, bin_data, offset)
    print '魔数:%d, 图片数量: %d张' % (magic_number, num_images)

    # 解析数据集
    offset += struct.calcsize(fmt_header)
    fmt_image = '>B'
    labels = np.empty(num_images)
    for i in range(num_images):
        if (i + 1) % 10000 == 0:
            print '已解析 %d' % (i + 1) + '张'
        labels[i] = struct.unpack_from(fmt_image, bin_data, offset)[0]
        offset += struct.calcsize(fmt_image)
    return labels


def load_train_images(idx_ubyte_file=train_images_idx3_ubyte_file):
    """
    TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000803(2051) magic number
    0004     32 bit integer  60000            number of images
    0008     32 bit integer  28               number of rows
    0012     32 bit integer  28               number of columns
    0016     unsigned byte   ??               pixel
    0017     unsigned byte   ??               pixel
    ........
    xxxx     unsigned byte   ??               pixel
    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

    :param idx_ubyte_file: idx文件路径
    :return: n*row*col维np.array对象,n为图片数量
    """
    return decode_idx3_ubyte(idx_ubyte_file)


def load_train_labels(idx_ubyte_file=train_labels_idx1_ubyte_file):
    """
    TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000801(2049) magic number (MSB first)
    0004     32 bit integer  60000            number of items
    0008     unsigned byte   ??               label
    0009     unsigned byte   ??               label
    ........
    xxxx     unsigned byte   ??               label
    The labels values are 0 to 9.

    :param idx_ubyte_file: idx文件路径
    :return: n*1维np.array对象,n为图片数量
    """
    return decode_idx1_ubyte(idx_ubyte_file)


def load_test_images(idx_ubyte_file=test_images_idx3_ubyte_file):
    """
    TEST SET IMAGE FILE (t10k-images-idx3-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000803(2051) magic number
    0004     32 bit integer  10000            number of images
    0008     32 bit integer  28               number of rows
    0012     32 bit integer  28               number of columns
    0016     unsigned byte   ??               pixel
    0017     unsigned byte   ??               pixel
    ........
    xxxx     unsigned byte   ??               pixel
    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

    :param idx_ubyte_file: idx文件路径
    :return: n*row*col维np.array对象,n为图片数量
    """
    return decode_idx3_ubyte(idx_ubyte_file)


def load_test_labels(idx_ubyte_file=test_labels_idx1_ubyte_file):
    """
    TEST SET LABEL FILE (t10k-labels-idx1-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000801(2049) magic number (MSB first)
    0004     32 bit integer  10000            number of items
    0008     unsigned byte   ??               label
    0009     unsigned byte   ??               label
    ........
    xxxx     unsigned byte   ??               label
    The labels values are 0 to 9.

    :param idx_ubyte_file: idx文件路径
    :return: n*1维np.array对象,n为图片数量
    """
    return decode_idx1_ubyte(idx_ubyte_file)




def run():
    train_images = load_train_images()
    train_labels = load_train_labels()
    # test_images = load_test_images()
    # test_labels = load_test_labels()

    # 查看前十个数据及其标签以读取是否正确
    for i in range(10):
        print train_labels[i]
        plt.imshow(train_images[i], cmap='gray')
        plt.show()
    print 'done'

if __name__ == '__main__':
    run()


作者:monitor1379
链接:http://www.jianshu.com/p/84f72791806f
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

你可能感兴趣的:(使用Python解析MNIST数据集(IDX文件格式))