牛顿流体动量控制方程

流体动量控制方程

Equation of Motion for a Newtonian Fluid with Constant ρ ρ and μ μ

控制方程通式:

ρDvvDt=p+μ2vv+ρgg ρ D v v D t = − ∇ p + μ ∇ 2 v v + ρ g g


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ρ(vxt+vxvxx+vyvxy+vzvxz)=px+μ[2vxx+2vxy+2vxz]+ρgx ρ ( ∂ v x ∂ t + v x ∂ v x ∂ x + v y ∂ v x ∂ y + v z ∂ v x ∂ z ) = − ∂ p ∂ x + μ [ ∂ 2 v x ∂ x + ∂ 2 v x ∂ y + ∂ 2 v x ∂ z ] + ρ g x 1-1
ρ(vyt+vxvyx+vyvyy+vzvyz)=py+μ[2vyx+2vyy+2vyz]+ρgy ρ ( ∂ v y ∂ t + v x ∂ v y ∂ x + v y ∂ v y ∂ y + v z ∂ v y ∂ z ) = − ∂ p ∂ y + μ [ ∂ 2 v y ∂ x + ∂ 2 v y ∂ y + ∂ 2 v y ∂ z ] + ρ g y 1-2
ρ(vzt+vxvzx+vyvzy+vzvzz)=pz+μ[2vzx+2vzy+2vzz]+ρgz ρ ( ∂ v z ∂ t + v x ∂ v z ∂ x + v y ∂ v z ∂ y + v z ∂ v z ∂ z ) = − ∂ p ∂ z + μ [ ∂ 2 v z ∂ x + ∂ 2 v z ∂ y + ∂ 2 v z ∂ z ] + ρ g z 1-3

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ρ(vrt+vrvrr+vθrvrθ+vzvrzv2θr)=pr+μ[r(1rr(rvr))+1r22vrθ2+2vrz22r2vθθ]+ρgr ρ ( ∂ v r ∂ t + v r ∂ v r ∂ r + v θ r ∂ v r ∂ θ + v z ∂ v r ∂ z − v θ 2 r ) = − ∂ p ∂ r + μ [ ∂ ∂ r ( 1 r ∂ ∂ r ( r v r ) ) + 1 r 2 ∂ 2 v r ∂ θ 2 + ∂ 2 v r ∂ z 2 − 2 r 2 ∂ v θ ∂ θ ] + ρ g r 2-1
ρ(vθt+vrvθr+vθrvθθ+vzvθz+vrvθr)=1rpθ+μ[r(1rr(rvθ))+1r22vθθ2+2vθz2+2r2vrθ]+ρgθ ρ ( ∂ v θ ∂ t + v r ∂ v θ ∂ r + v θ r ∂ v θ ∂ θ + v z ∂ v θ ∂ z + v r v θ r ) = − 1 r ∂ p ∂ θ + μ [ ∂ ∂ r ( 1 r ∂ ∂ r ( r v θ ) ) + 1 r 2 ∂ 2 v θ ∂ θ 2 + ∂ 2 v θ ∂ z 2 + 2 r 2 ∂ v r ∂ θ ] + ρ g θ 2-2
ρ(vzt+vrvzr+vθrvzθ+vzvzz)=pz+μ[1rr(rvzr)+1r22vzθ2+2vzz2]+ρgz ρ ( ∂ v z ∂ t + v r ∂ v z ∂ r + v θ r ∂ v z ∂ θ + v z ∂ v z ∂ z ) = − ∂ p ∂ z + μ [ 1 r ∂ ∂ r ( r ∂ v z ∂ r ) + 1 r 2 ∂ 2 v z ∂ θ 2 + ∂ 2 v z ∂ z 2 ] + ρ g z 2-3

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ρ(vrt+vrvrr+vθrvrθ+vϕrsinθvrϕv2θ+v2ϕr)=pr+μ[1r22r2(r2vr)+1rsinθθ(sinθvrθ)+1r2sin2θ2vrϕ2]+ρgr ρ ( ∂ v r ∂ t + v r ∂ v r ∂ r + v θ r ∂ v r ∂ θ + v ϕ r s i n θ ∂ v r ∂ ϕ − v θ 2 + v ϕ 2 r ) = − ∂ p ∂ r + μ [ 1 r 2 ∂ 2 ∂ r 2 ( r 2 v r ) + 1 r s i n θ ∂ ∂ θ ( s i n θ ∂ v r ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 v r ∂ ϕ 2 ] + ρ g r 3-1
ρ(vθt+vrvθr+vθrvθθ+vϕrsinθvθϕ+vrvθv2ϕcotθr)=1rpθ+μ[1r2r(r2vθr)+1r2θ(1sinθθ(vθsinθ))+1r2sin2θ2vθϕ2+2r2vrθ2cotθr2sinθvϕϕ]+ρgθ ρ ( ∂ v θ ∂ t + v r ∂ v θ ∂ r + v θ r ∂ v θ ∂ θ + v ϕ r s i n θ ∂ v θ ∂ ϕ + v r v θ − v ϕ 2 c o t θ r ) = − 1 r ∂ p ∂ θ + μ [ 1 r 2 ∂ ∂ r ( r 2 ∂ v θ ∂ r ) + 1 r 2 ∂ ∂ θ ( 1 s i n θ ∂ ∂ θ ( v θ s i n θ ) ) + 1 r 2 s i n 2 θ ∂ 2 v θ ∂ ϕ 2 + 2 r 2 ∂ v r ∂ θ − 2 c o t θ r 2 s i n θ ∂ v ϕ ∂ ϕ ] + ρ g θ 3-2
ρ(vϕt+vrvϕr+vθrvϕθ+vϕrsinθvϕϕ+vϕvr+vθvϕcotθr)=1rsinθpϕ+μ[1r2r(r2vϕr)+1r2θ(1sinθθ(vϕsinθ))+1r2sin2θ2vϕϕ2+2r2sinθvrϕ+2cotθr2sinθvθϕ]+ρgϕ ρ ( ∂ v ϕ ∂ t + v r ∂ v ϕ ∂ r + v θ r ∂ v ϕ ∂ θ + v ϕ r s i n θ ∂ v ϕ ∂ ϕ + v ϕ v r + v θ v ϕ c o t θ r ) = − 1 r s i n θ ∂ p ∂ ϕ + μ [ 1 r 2 ∂ ∂ r ( r 2 ∂ v ϕ ∂ r ) + 1 r 2 ∂ ∂ θ ( 1 s i n θ ∂ ∂ θ ( v ϕ s i n θ ) ) + 1 r 2 s i n 2 θ ∂ 2 v ϕ ∂ ϕ 2 + 2 r 2 s i n θ ∂ v r ∂ ϕ + 2 c o t θ r 2 s i n θ ∂ v θ ∂ ϕ ] + ρ g ϕ 3-3

参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(流体力学【Fluid,Mechanics】)