基于DetNet-FPN的视频实时检测demo(pytorch版)

        最近要使用faster-rcnn,DetNet-FPN以及Light-Head三种目标检测方案训练自己的数据集,并做一个比较。在GitHub上搜罗了一番,发现下面三个开源项目一脉相承,正合我意。期中DetNet_pytorch和pytorch-lighthead我认为都是基于faster-rcnn.pytorch这个项目改的,作者貌似是佐治亚理工的Ph.D.,确实是高手中的高高手,代码写得很流畅。我三个项目都fork了下来,做了不少的修改以适配自己的数据集(不能一天到晚玩coco、voc嘛),期中faster-rcnn.pytorch和DetNet_pytorch都成功地进行了适配并做了大量实验,唯独pytorch-lighthead死活没有搞成功。哎,暂且不管了,考虑到我自己的数据集分类数很有限,用lighthead理论上并不会有啥优势。事实上,我后面尝试了LightHead的tensorflow版本,也印证了我的想法,mAP差异甚小。

https://github.com/jwyang/faster-rcnn.pytorch   

https://github.com/guoruoqian/DetNet_pytorch

https://github.com/chengsq/pytorch-lighthead

        以使用的较多的DetNet_pytorch为例,配合代码介绍视频流demo(输入为视频文件而非单张图片)。对于DetNet的实现原理,不再做过多阐述,这一部分网络上已有大量详细介绍的文章。

0. 我的环境

  • Python 2.7
  • Pytorch 0.3.1
  • CUDA 9.0

1. 准备

        按照作者文档上的要求安装好一些依赖包,这个过程可能会有一点小挫折,别一开始就放弃,以下是作者建议的环境配置。

  • Python 2.7 or 3.6
  • Pytorch 0.2.0 or higher(not support pytorch version >=0.4.0)
  • CUDA 8.0 or higher

        从Git上下载代码,完成编译。编译也有可能遇到错误,继续锻炼你Linux运维能力。

cd lib
sh make.sh

2.代码调整

        作者已经提供了一个demo.py的程序,虽然不是我想要的视频流demo,但主体架构没问题,只要在这上面进行二次开发即可。以下是我修改后的demo.py程序,以供参考。如果是想要修改为faster rcnn版的视频流demo也是很容易的,可自行修改。

# coding: utf-8
# --------------------------------------------------------
# Tensorflow Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import pdb
import time
import cv2
import cPickle
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import glob
import torchvision.transforms as transforms
import torchvision.datasets as dset
from PIL import Image
from scipy.misc import imread
from roi_data_layer.roidb import combined_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir

from model.rpn.bbox_transform import clip_boxes
from model.nms.nms_wrapper import nms
from model.rpn.bbox_transform import bbox_transform_inv
from model.utils.net_utils import save_net, load_net, vis_detections
from model.utils.blob import prep_im_for_blob,im_list_to_blob
import pdb
from model.fpn.detnet_backbone import detnet

import warnings
warnings.filterwarnings("ignore")

def parse_args():
  """
  Parse input arguments
  """
  #减少篇幅,此处省略若干

  args = parser.parse_args()
  return args

lr = cfg.TRAIN.LEARNING_RATE
momentum = cfg.TRAIN.MOMENTUM
weight_decay = cfg.TRAIN.WEIGHT_DECAY

def get_image_blob(im):
  """Converts an image into a network input.
  Arguments:
    im: data of image
  Returns:
    blob (ndarray): a data blob holding an image pyramid
    im_scale_factors (list): list of image scales (relative to im) used
      in the image pyramid
  """
  im_scales = []
  processed_ims = []
  scale_inds = np.random.randint(0, high=len(cfg.TRAIN.SCALES), size=1)

  target_size = cfg.TRAIN.SCALES[scale_inds[0]]
  im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, cfg.PIXEL_STDS, target_size, cfg.TRAIN.MAX_SIZE)

  im_scales.append(im_scale)
  processed_ims.append(im)

  # Create a blob to hold the input images
  blob = im_list_to_blob(processed_ims)

  return blob, im_scales

if __name__ == '__main__':

  args = parse_args()

  print('Called with args:')
  print(args)

  args.cfg_file = "cfgs/{}.yml".format(args.net)
  if args.cfg_file is not None:
    cfg_from_file(args.cfg_file)
  if args.set_cfgs is not None:
    cfg_from_list(args.set_cfgs)

  #print('Using config:')
  #pprint.pprint(cfg)
  np.random.seed(cfg.RNG_SEED)
  cfg.TRAIN.USE_FLIPPED = False

  # train set
  # -- Note: Use validation set and disable the flipped to enable faster loading.

  if args.exp_name is not None:
    input_dir = args.load_dir + "/" + args.net + "/" + args.dataset + '/' + args.exp_name
  else:
    input_dir = args.load_dir + "/" + args.net + "/" + args.dataset
  if not os.path.exists(input_dir):
    raise Exception('There is no input directory for loading network from ' + input_dir)
  load_name = os.path.join(input_dir,
    'fpn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint))

  classes = cfg.TRAIN.CLASSES
  fpn = detnet(classes, 59, pretrained=False, class_agnostic=args.class_agnostic)
  fpn.create_architecture()

  print('load checkpoint %s' % (load_name))
  checkpoint = torch.load(load_name)

  fpn.load_state_dict(checkpoint['model'])
  if 'pooling_mode' in checkpoint.keys():
      cfg.POOLING_MODE = checkpoint['pooling_mode']

  # initilize the tensor holder here.
  im_data = torch.FloatTensor(1)
  im_info = torch.FloatTensor(1)
  num_boxes = torch.LongTensor(1)
  gt_boxes = torch.FloatTensor(1)

  # ship to cuda
  if args.ngpu > 0:
    im_data = im_data.cuda()
    im_info = im_info.cuda()
    num_boxes = num_boxes.cuda()
    gt_boxes = gt_boxes.cuda()

  # make variable
  im_data = Variable(im_data, volatile=True)
  im_info = Variable(im_info, volatile=True)
  num_boxes = Variable(num_boxes, volatile=True)
  gt_boxes = Variable(gt_boxes, volatile=True)

  if args.ngpu > 0:
    cfg.CUDA = True

  if args.ngpu > 0:
    fpn.cuda()

  fpn.eval()

  max_per_image = 100
  thresh = 0.05
  vis_thresh = 0.8
  vis = True

  if not os.path.exists(args.video_file):
      raise Exception("video %s not exist".format(args.video_file))

  vc = cv2.VideoCapture(args.video_file)
  i = 0
  while True:
      i += 1
      _, im = vc.read()
      if im is None:
          break

      blobs, im_scales = get_image_blob(im)
      assert len(im_scales) == 1, "Only single-image batch implemented"
      im_blob = blobs
      # (h,w,scale)
      im_info_np = np.array([[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32)
      im_data_pt = torch.from_numpy(im_blob)
      # exchange dimension->(b,c,h,w)
      im_data_pt = im_data_pt.permute(0, 3, 1, 2)

      im_info_pt = torch.from_numpy(im_info_np)
      #im_info_pt = im_info_pt.view(3)

      im_data.data.resize_(im_data_pt.size()).copy_(im_data_pt)
      im_info.data.resize_(im_info_pt.size()).copy_(im_info_pt)
      gt_boxes.data.resize_(1, 1, 5).zero_()
      num_boxes.data.resize_(1).zero_()

      det_tic = time.time()
      rois, cls_prob, bbox_pred, \
          _, _, _, _, _ = fpn(im_data, im_info, gt_boxes, num_boxes)
      #pdb.set_trace()

      scores = cls_prob.data
      boxes = rois.data[:, :, 1:5]

      if cfg.TEST.BBOX_REG:
            # Apply bounding-box regression deltas
            box_deltas = bbox_pred.data
            if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
                # Optionally normalize targets by a precomputed mean and stdev
                if args.class_agnostic:
                    box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
                                 + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
                    box_deltas = box_deltas.view(1, -1, 4)
                else:
                    box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
                                 + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
                    box_deltas = box_deltas.view(1, -1, 4 * len(classes))

            #pdb.set_trace()
            pred_boxes = bbox_transform_inv(boxes, box_deltas, 1)
            pred_boxes = clip_boxes(pred_boxes, im_info.data, 1)
      else:
          # Simply repeat the boxes, once for each class
          pred_boxes = np.tile(boxes, (1, scores.shape[1]))

      pred_boxes /= im_scales[0]

      scores = scores.squeeze()
      pred_boxes = pred_boxes.squeeze()
      det_toc = time.time()
      detect_time = det_toc - det_tic

      if vis:
          im2show = np.copy(im)

      sys.stdout.write('im_detect: {:d} {:.3f}s   \r'.format(i, detect_time))
      sys.stdout.flush()

      for j in xrange(1, len(classes)): # 0 for background
          inds = torch.nonzero(scores[:,j] > thresh).view(-1)
          # if there is det
          if inds.numel() > 0:
            cls_scores = scores[:,j][inds] # confidence of the specified class
            _, order = torch.sort(cls_scores, 0, True) # sorted scores and indexes
            if args.class_agnostic:
              cls_boxes = pred_boxes[inds, :]
            else:
              cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4]

            cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1)
            # cls_dets = torch.cat((cls_boxes, cls_scores), 1)
            cls_dets = cls_dets[order]
            keep = nms(cls_dets, cfg.TEST.NMS) # after nms
            cls_dets = cls_dets[keep.view(-1).long()] # keep shape is ?x1
            if vis:
              # cls_dets.cpu().numpy() make tensor->numpy array
              im2show = vis_detections(im2show, classes[j], cls_dets.cpu().numpy(), vis_thresh)
              #drawpath = os.path.join('images', "{}.jpg".format(i))
              #cv2.imwrite(drawpath, im2show)
      cv2.imshow('demo', im2show)
      if (cv2.waitKey(25) & 0xFF) == ord('q'):
          break
  vc.release()
  cv2.destroyAllWindows()

3.运行

基于DetNet-FPN的视频实时检测demo(pytorch版)_第1张图片

【代码】

https://github.com/LeftThink/DetNet_pytorch.git

 

你可能感兴趣的:(深度学习)