LeetCode笔记:441. Arranging Coins

问题:

You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.

Given n, find the total number of full staircase rows that can be formed.

n is a non-negative integer and fits within the range of a 32-bit signed integer.

Example 1:

n = 5

The coins can form the following rows:
¤
¤ ¤
¤ ¤

Because the 3rd row is incomplete, we return 2.

Example 2:

n = 8

The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤

Because the 4th row is incomplete, we return 3.

大意:

你有n枚硬币,想要用来组成一个完整的楼梯,每一层都要有层数对应的硬币数。

给出n,返回可以组成的完整楼梯的层数。

n是一个非负数,且满足32位int的范围。

例1:

n = 5

硬币可以组成下面的行:
¤
¤ ¤
¤ ¤

因为第三层是不完整的,所以我们返回2。

Example 2:

n = 8

硬币可以组成下面的行:
¤
¤ ¤
¤ ¤ ¤
¤ ¤

因为第四行是不完整的,所以我们返回3。

思路:

这道题要用硬币去一层层堆楼梯。其实很容易想到累加和。

题目的意思其实就是从1~x层完整楼梯硬币数量加起来,要小于等于n,求最大的x。说到加起来的数量,很容易想到求累加和,我们知道求累加和的公式为:

sum = (1+x)*x/2

这里就是要求 sum <= n 了。我们反过来求层数x。如果直接开方来求会存在错误,必须因式分解求得准确的x值:

(1+x)*x/2 <= n
x + x*x <= 2*n
4*x*x + 4*x <= 8*n
(2*x + 1)*(2*x + 1) - 1 <= 8*n
x <= (sqrt(8*n + 1) - 1) / 2

其中Math.sqrt()是求平方根的函数。这样我们就求出了x,最后要记得强制转换为int型数。

代码(Java):

public class Solution {
    public int arrangeCoins(int n) {
        return (int)((Math.sqrt(8*(long)n + 1) - 1)/2);
    }
}

合集:https://github.com/Cloudox/LeetCode-Record
版权所有:http://blog.csdn.net/cloudox_

你可能感兴趣的:(LeetCode,LeetCode笔记)