http://acm.hdu.edu.cn/showproblem.php?pid=3415
Problem Description
Given a circle sequence A[1],A[2],A[3]……A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
经典单调队列问题,先将区间前缀和求出来,然后维护最小的单调队列。
每次判断的时候看是否在K长度范围之内即可。
#include
#include
#include
#include
using namespace std;
typedef long long LL;
const int N = 1e5 + 100;
const LL INF = (LL)N*N;
LL f[N*2],que[N*2],arr[N*2];
int pos[N*2];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,k,x,idl,idr;
scanf("%d%d",&n,&k);
int ln = n;
for(int i=1;i<=n;i++) scanf("%I64d",&arr[i]),f[i]=f[i-1]+arr[i];
for(int i=1;i1] + arr[i];
n += k-1;
LL ans = -INF;
int head = 1, tail = 0;
for(int i=0;i<=n;i++)
{
while(head <= tail && pos[head]+kif( head<=tail && ans < f[i]-que[head])
ans = f[i]-que[head],idl = pos[head]+1,idr = i;
while(head <= tail && que[tail]>f[i]) tail--;
que[++tail] = f[i];
pos[tail] = i;
}
if(idl>ln) idl -= ln;
if(idr>ln) idr -= ln;
printf("%I64d %d %d\n",ans,idl,idr);
}
return 0;
}