- MongoDB副本集与分片综合应用
李明一.
mongodb数据库
一、MongoDB副本集1.1、MongoDB复制在mongodb学习阶段,一般用的都是单台服务器,一个mongod服务进程。如果仅仅作为学习开发是可以的,但是如果用到生产环境,风险会很高,例如服务器崩溃、硬件出现问题,最坏的情况是磁盘或网络出问题可能会导致数损坏或数据不可访问。MongoDB复制是将数据同步在多个服务器的过程。复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 射频学习之HFSS入门(一)
OKay_J
学习经验分享笔记
HFSS下载与介绍下载介绍基本概念特点工作流程优势下载我下载的版本是ANSYSElectromagneticsSuite2023R1通过这篇文章下载,教程非常详细介绍基本概念HFSS(High-FrequencyStructureSimulator)是由ANSYS开发的一个专业的电磁场仿真软件,广泛用于高频电子工程中的电磁场分析。它主要用于设计和优化电磁设备,如天线、微波元件、射频(RF)设备等,
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- 跟着小K开始零基础Python量化分析之旅 1: 初入量化江湖 —— Python与量化的第一次邂逅
山海青风
python量化分析
第一章:初入量化江湖——Python与量化的第一次邂逅故事情境在一个热闹的理财交流群里,小K偶然听到有人提起“量化投资”。那一刻,他心中燃起了一种莫名的好奇与憧憬:“量化投资究竟是什么?我真的能用代码来炒股吗?”然而,面对这一连串新奇的名词,小K感到有些茫然,一头雾水。就在他犹豫不决的时候,一位神秘的前辈私信他:“想要在量化江湖中闯出一片天地,首先得打好基础。先从搞定Python和学习如何读取股票
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- 跟着小K开始零基础Python量化分析之旅 2: 初试身手 —— Python基础与神秘股票清单
山海青风
python
第二章:初试身手——Python基础与神秘股票清单在这一章中,我们将跟随小K的脚步,开启Python的初探之旅。小K刚刚踏入量化投资的世界,就收到了前辈神秘发送的一份文件——“神秘股票清单.csv”。前辈告诉他,只有牢牢掌握Python的基础语法,才能游刃有余地处理金融数据,进一步深入量化分析的奥秘。接下来,就让我们一起体验小K如何用Python完成这个第一个小任务,从而收获满满的成就感吧!故事情
- 跟着小K开始零基础Python量化分析之旅 3: 初探数据世界 —— Pandas与数据清洗的武林秘笈
山海青风
python
第三章:初探数据世界——Pandas与数据清洗的武林秘笈在量化江湖中,数据正如武林秘籍中的内功心法,必须先打好基础,才能施展后续高深武技。小K这次获得了一份历史股票交易数据,但初看之下却是一团乱麻:缺失值、重复记录、日期格式不统一……前辈笑着说:“兄弟,若想踏入量化之路,先要学会如何把这‘脏数据’炼成一手干净的‘真气’!”下面,就跟随小K的脚步,逐步揭开数据清洗的秘密,掌握Pandas的基本功法,
- 研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?
程序员yt
c++开源java
今天给大家分享的是一位粉丝的提问,研二自学C++想转码,如何规划才能成功?有什么好的开源项目推荐?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:你好,我想咨询一下转码相关的问题。我的学历背景是安徽大学本科西安电子科技大学研二在读,目前已经完成了C++基本语法的学习,也完成了两个国外的公开课CS144和6.s081的学习与相关lab的编写。接下来
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- Python 学习之旅:高级阶段(十七)Web 开发之模板引擎(如 Jinja2)
喜-喜
Python学习python学习前端
在Python的Web开发进程中,模板引擎是一个关键的工具,它能帮助我们将动态数据和静态的HTML结构结合起来,生成最终呈现给用户的网页。Jinja2作为Python中广泛使用的模板引擎,以其简洁的语法和强大的功能,在众多Web框架中发挥着重要作用。接下来,让我们以Flask框架为依托,深入了解Jinja2模板引擎。一、模板引擎的作用 在Web开发中,我们常常需要根据不同的用户请求,动态生成
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 机器学习数学通关指南——牛顿-莱布尼茨公式
Shockang
机器学习数学通关指南机器学习数学微积分
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一句话总结∫abf(x) dx=F(b)−F(a)\int_{a}^{b}f(x)\,dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)其中,F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数(即F′(
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- java23种设计模式-单例模式
千里码!
后端技术设计模式#Java单例模式设计模式
单例模式(SingletonPattern)学习笔记定义单例模式属于创建型设计模式,确保一个类只有一个实例,并提供全局访问点。是Java中最简单但实现最复杂的设计模式。适用场景需要控制资源访问(如数据库连接池)全局配置对象日志记录器设备管理器(如打印机服务)缓存系统线程池/连接池管理模式结构类图Singleton-staticinstance:Singleton-Singleton()+stati
- Rust在前端领域有哪些应用?
极客前端探索者
rust前端开发语言
随着技术的飞速发展,编程语言的选择对项目的影响日益重要。Rust作为一种新兴的编程语言,以其独特的性能和安全性优势,开始在前端领域崭露头角。1.高性能的WebAssembly:Rust可以编译成WebAssembly,这是一种可以在现代Web浏览器中运行的二进制代码格式。这种能力使得Rust编写的程序能够在浏览器中以原生代码的形式运行,极大地提高了执行效率和性能。2.跨平台应用开发:Rust支持多
- 50周学习go语言:第1周 环境搭建
PyAIGCMaster
50周学习go语言学习golang开发语言
以下是为零基础学习者准备的详细第1周教程,包含环境搭建、工具配置和首个Go程序的完整操作指南:一、Go语言环境安装(Windows/macOS/Linux通用)1.下载安装包官网地址:https://go.dev/dl//根据系统选择对应版本:Windows:下载.msi文件(如go1.21.0.windows-amd64.msi)macOS:下载.pkg文件(如go1.21.0.darwin-a
- 《ArkTs鸿蒙应用开发入门到实战》震感上市啦!
敏敏_4148
我的好书harmonyos华为
从传统HarmonyOS应用开发到元服务开发书籍结构基础篇:HarmonyOS历史、核心技术、ArkTS/ArkUI基础。进阶篇:布局容器、基础/高级组件、低代码开发,提升效率。实战篇:真实项目案例,理论转实战,应对复杂场景。书籍特色实战项目案例:23个应用案例+4个实战项目,基于作者实战经验,稍作调整即可实战。系统学习路径:从ArkTS语言、ArkUI框架讲起,助你快速上手。多样化技术对比:通过
- Rust语言:依赖注入与控制反转实践指南
多多的编程笔记
Rust基础入门rustjava前端
理解Rust的依赖注入和控制反转依赖注入和控制反转是面向对象编程中常用的设计模式,它们有助于提高代码的可测试性、可维护性和可扩展性。Rust是一种系统编程语言,虽然它不是一门面向对象的语言,但我们可以借鉴依赖注入和控制反转的理念来编写更加灵活和可扩展的Rust代码。本文将介绍依赖注入和控制反转的概念,并展示如何在Rust中实现这些概念。依赖注入依赖注入是一种设计模式,它允许我们将依赖关系从代码中移
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include