基于划分的聚类----K-means算法使用(R语言)

library(amap)#这个包里有kmeans函数
library(R2SWF)
library(animation)#导入包,后两个是作动画的包
customer <- read.csv("customer.csv")#读取文件,赋给customer
age_inc <- customer[,c(3,6)]#获取customer的第三列和第六列(如果是3:6就是三到六列)赋给age_inc
output = dev2swf({
  par(mar = c(3, 3, 1, 1.5), mgp = c(1.5, 0.5, 0))
  kmeans.ani(x = age_inc, centers = 3, #指定age_inc为要处理的文件,指定类数为3
             hints = c("Move centers!", "Find cluster?"), pch = 1:3, col = 1:3)
}, output = "income_age.swf")#输出flash动画
swf2html(output)#将动画放到HTML里

结果展示,因为是个动画,所以截了一下聚类结果:

基于划分的聚类----K-means算法使用(R语言)_第1张图片

设置工作目录setwd("H://R")

下面转自:http://www.cnblogs.com/blueicely/archive/2012/12/13/2816957.html

R语言常用函数

基本

一、数据管理

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表 
data.frame:数据框 c:连接为向量或列表 length:求长度 subset:求子集 seq,from:to,sequence:等差序列 
rep:重复 NA:缺失值 NULL:空对象 sort,order,unique,rev:排序 unlist:展平列表 attr,attributes:对象属性 
mode,typeof:对象存储模式与类型 names:对象的名字属性

二、字符串处理

character:字符型向量 nchar:字符数 substr:取子串 format,formatC:把对象用格式转换为字符串 paste,strsplit:连接或拆分
 charmatch,pmatch:字符串匹配 grep,sub,gsub:模式匹配与替换  

三、复数

complex,Re,Im,Mod,Arg,Conj:复数函数  

四、因子

factor:因子 codes:因子的编码 levels:因子的各水平的名字 nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子 
table:交叉频数表 split:按因子分组 aggregate:计算各数据子集的概括统计量 tapply:对“不规则”数组应用函数

数学

一、计算

+, -, *, /, ^, %%, %/%:四则运算 ceiling,floor,round,signif,trunc,zapsmall:舍入 max,min,pmax,pmin:最大最小值 
range:最大值和最小值 sum,prod:向量元素和,积 cumsum,cumprod,cummax,cummin:累加、累乘 sort:排序 approx和approx fun:插值 diff:差分 sign:符号函数  

二、数学函数

abs,sqrt:绝对值,平方根 log, exp, log10, log2:对数与指数函数 sin,cos,tan,asin,acos,atan,atan2:三角函数 
sinh,cosh,tanh,asinh,acosh,atanh:双曲函数
beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数
fft,mvfft,convolve:富利叶变换及卷积 polyroot:多项式求根 poly:正交多项式 spline,splinefun:样条差值 
besselI,besselK,besselJ,besselY,gammaCody:Bessel函数 deriv:简单表达式的符号微分或算法微分
 

三、数组

array:建立数组 matrix:生成矩阵 data.matrix:把数据框转换为数值型矩阵 lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量 t:矩阵转置
 cbind:把列合并为矩阵 rbind:把行合并为矩阵 diag:矩阵对角元素向量或生成对角矩阵 aperm:数组转置 nrow, ncol:计算数组的行数和列数 dim:对象的维向量 
dimnames:对象的维名 row/colnames:行名或列名 %*%:矩阵乘法 crossprod:矩阵交叉乘积(内积) outer:数组外积 kronecker:数组的Kronecker积 
apply:对数组的某些维应用函数 tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量 aggregate:计算数据子集的概括统计量 scale:矩阵标准化
 matplot:对矩阵各列绘图 cor:相关阵或协差阵 Contrast:对照矩阵 row:矩阵的行下标集 col:求列下标集  

四、线性代数

solve:解线性方程组或求逆 eigen:矩阵的特征值分解 svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组 chol:Choleski分解 
qr:矩阵的QR分解 chol2inv:由Choleski分解求逆  

五、逻辑运算

<,>,<=,>=,==,!=:比较运算符 !,&,&&,|,||,xor():逻辑运算符 logical:生成逻辑向量 all,any:逻辑向量都为真或存在真
ifelse():二者择一 match,%in%:查找 unique:找出互不相同的元素 which:找到真值下标集合 duplicated:找到重复元素  

六、优化及求根

optimize,uniroot,polyroot:一维优化与求根

程序设计

一、控制结构

if,else,ifelse,switch:分支 for,while,repeat,break,next:循环 apply,lapply,sapply,tapply,sweep:替代循环的函数。  

二、函数

function:函数定义 source:调用文件 call:函数调用 .C,.Fortran:调用C或者Fortran子程序的动态链接库。 Recall:递归调用 
browser,debug,trace,traceback:程序调试 options:指定系统参数 missing:判断虚参是否有对应实参 nargs:参数个数 stop:终止函数执行
on.exit:指定退出时执行 eval,expression:表达式计算 system.time:表达式计算计时 invisible:使变量不显示 menu:选择菜单(字符列表菜单)
其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,
is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine

三、输入输出

cat,print:显示对象 sink:输出转向到指定文件 dump,save,dput,write:输出对象 scan,read.table,load,dget:读入  

四、工作环境

ls,objects:显示对象列表 rm, remove:删除对象 q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。 
options:系统选项 ?,help,help.start,apropos:帮助功能 data:列出数据集

统计计算

一、统计分布

每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数函数,r――随机数函数。
比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:
norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心) unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔 
lnorm:对数正态,logis:逻辑分布,cauchy:柯西, binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松 signrank:符号秩,
wilcox:秩和,tukey:学生化极差  

二、简单统计量

sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。

三、统计检验

 R中已实现的有chisq.test,prop.test,t.test。  

四、多元分析

cor,cov.wt,var:协方差阵及相关阵计算 biplot,biplot.princomp:多元数据biplot图 cancor:典则相关 princomp:主成分分析 hclust:谱系聚类 
kmeans:k-均值聚类 cmdscale:经典多维标度 其它有dist,mahalanobis,cov.rob。  

五、时间序列

ts:时间序列对象 diff:计算差分 time:时间序列的采样时间 window:时间窗  

六、统计模型

lm,glm,aov:线性模型、广义线性模型、方差分析

你可能感兴趣的:(数据挖掘,R)