排列组合数模板

 

A(n,m) = N!/(n-m)!,C(n,m)=N!/((n-m)!*m!)

1费马小定理求逆元,

2预处理一个n!的数组,

3为了防止乘法,乘方爆long long int ,采用了快速乘法和快速幂

#include
#define ll long long
#define mod (ll)(1e9+7)
using namespace std;
ll a[100005];
ll Pow(ll a,ll b){
    a%=mod;
    ll ans = 1;
    while(b)
    {
        if(b&1)
            ans = (ans*a)%mod;
        a = (a*a)%mod;
        b/=2;
    }
    return ans%mod;
}
ll Quk(ll a,ll b){
    a%=mod;
    ll ans = 0;
    while(b)
    {
        if(b&1)
            ans = (ans+a)%mod;
        a = (a+a)%mod;
        b/=2;
    }
    return ans%mod;
}
ll C(ll n,ll m){
    return Quk(Quk(a[n],Pow(a[n-m],mod-2)),Pow(a[m],mod-2))%mod;
}
ll A(ll n,ll m){
    return Quk(a[n],Pow(a[n-m],mod-2))%mod;
}
int main()
{
    a[0]=a[1]=1;
    for(ll i=2;i<=100000;i++)
        a[i]=Quk(a[i-1],i);
    ll n,m;
    while(~scanf("%lld%lld",&n,&m))
        printf("%lld\n",C(n,m));
    return 0;
}

 

 

你可能感兴趣的:(模板类(什么,这也是模板))