生成train和val的prototex
"""
Spyder Editor
"""
from caffe import layers as L,params as P,to_proto
path='/home/xxx/data/'
train_lmdb=path+'train_db'
val_lmdb=path+'val_db'
mean_file=path+'mean.binaryproto'
train_proto=path+'train.prototxt'
val_proto=path+'val.prototxt'
def create_net(lmdb,batch_size,include_acc=False):
data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,
transform_param=dict(crop_size=40,mean_file=mean_file,mirror=True))
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=16, pad=2,weight_filler=dict(type='xavier'))
relu1=L.ReLU(conv1, in_place=True)
pool1=L.Pooling(relu1, pool=P.Pooling.MAX, kernel_size=3, stride=2)
conv2=L.Convolution(pool1, kernel_size=3, stride=1,num_output=32, pad=1,weight_filler=dict(type='xavier'))
relu2=L.ReLU(conv2, in_place=True)
pool2=L.Pooling(relu2, pool=P.Pooling.MAX, kernel_size=3, stride=2)
fc3=L.InnerProduct(pool2, num_output=1024,weight_filler=dict(type='xavier'))
relu3=L.ReLU(fc3, in_place=True)
drop3 = L.Dropout(relu3, in_place=True)
fc4 = L.InnerProduct(drop3, num_output=10,weight_filler=dict(type='xavier'))
loss = L.SoftmaxWithLoss(fc4, label)
if include_acc:
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss)
def write_net():
with open(train_proto, 'w') as f:
f.write(str(create_net(train_lmdb,batch_size=64)))
with open(val_proto, 'w') as f:
f.write(str(create_net(val_lmdb,batch_size=32, include_acc=True)))
if __name__ == '__main__':
write_net()