梯度下降算法简单演示

计算每一步的梯度更新

def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i,0]
        y = points[i,1]
        b_gradient += -(2/N) * (y - ((w_current * x) + b_current)) #求导结果
        w_gradient += -(2/N) * x * (y-((w_current * x) + b_current)) #求导结果
    new_b = b_current - (learningRate * b_gradient)
    new_w = w_current - (learningRate * w_gradient)
    return [new_b, new_w]

梯度下降过程

def gradient_decent_runner(points, starting_b, starting_w, learning_rate, num_iterations)
    b = starting_b
    w = starting_w
    for i in range(num_iterations):
        b, w = step_gradient(b, m, np.array(points), learning_rate)
    return [b, w]

你可能感兴趣的:(Personal,understanding,of,MD)