这里实现一种不涉及硬件的I2C总线和设备驱动,然后分析I2C驱动在系统中的注册过程。这里实现的驱动类似于之前的FIFO字符设备驱动,与之不同的是这里使用了I2C驱动框架,设备文件写入和读取将通过i2c_client传递到指定的i2c_adaper,然后在i2c_adapter中操作一段内存。这个驱动非常简单,甚至没有使用FIFO这种硬件结构,只能进行读和写,毕竟内存的操作不是重点,重点是熟悉Linux系统的I2C驱动框架。
首先需要注意的是I2C驱动分为总线驱动和设备驱动,不能混为一谈。I2C总线驱动主要针对i2c_adapter和i2c_algorithm进行设置,一个i2c_adapter对应一个SOC中的I2C适配器。比如全志H3芯片有三个I2C接口,那么就对应三个I2C适配器,在I2C总线驱动中,主要完成对I2C适配器的配置工作,如写哪个寄存器配置I2C时钟,写哪个寄存器准备发送,接收到数据后从哪个寄存器读取等。可以看出这都是和平台相关的代码,主要由移植操作系统工程师实现。
I2C设备驱动是针对外设的驱动,这是在默认系统的I2C适配器已经能够正常工作情况下,指定调用哪个I2C适配器发送相应的数据给外设芯片。比如i2c-0上接了一个加速度传感器,那么我就可以调用i2c-0的适配器来向该外设发送相应的数据来操作它的寄存器,完成传感器的初始化、读取等操作。
i2c_algorithm
决定了该适配器是如何工作的。struct i2c_adapter {
struct module *owner;
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
void *algo_data;
...
struct device dev; /* the adapter device */
int nr;
char name[48];
...
struct list_head userspace_clients;
...
};
struct i2c_algorithm{
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,int num);
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data);
u32 (*functionality) (struct i2c_adapter *);
}
struct i2c_client {
unsigned short flags; /* div., see below */
unsigned short addr; /* chip address - NOTE: 7bit */
/* addresses are stored in the */
/* _LOWER_ 7 bits */
char name[I2C_NAME_SIZE];
struct i2c_adapter *adapter; /* the adapter we sit on */
struct device dev; /* the device structure */
int irq; /* irq issued by device */
struct list_head detected;
...
};
struct i2c_driver {
unsigned int class;
/* Notifies the driver that a new bus has appeared. You should avoid
* using this, it will be removed in a near future.
*/
int (*attach_adapter)(struct i2c_adapter *) __deprecated;
/* Standard driver model interfaces */
int (*probe)(struct i2c_client *, const struct i2c_device_id *);
int (*remove)(struct i2c_client *);
int (*probe_new)(struct i2c_client *);
void (*shutdown)(struct i2c_client *);
void (*alert)(struct i2c_client *, enum i2c_alert_protocol protocol,
unsigned int data);
int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id *id_table;
/* Device detection callback for automatic device creation */
int (*detect)(struct i2c_client *, struct i2c_board_info *);
const unsigned short *address_list;
struct list_head clients;
};
由于这里使用了platform总线框架,因此这里只贴出platform_driver部分,platform_device部分只包含一个简单的注册并且在第2节有相关代码参考,所以不再贴出来了。
#include
#include
#include
#include
#include
#include
#include
#include
#define PAGE_LEN 4096
struct myi2c_dev {
char *mem;
struct i2c_adapter adapter;
struct i2c_client *client;
};
// 返回-EAGAIN重试发送
static int i2c_test_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num)
{
struct myi2c_dev *dev = i2c_get_adapdata(adap);
int i;
for (i=0; iif (msgs[i].len > PAGE_LEN)
msgs[i].len = PAGE_LEN;
if (msgs[i].flags & I2C_M_RD) {
// 读数据
printk(KERN_INFO "read data from %p to %p\n", dev->mem,
msgs[i].buf);
if (copy_to_user(msgs[i].buf, dev->mem, msgs[i].len)) {
printk(KERN_INFO "i2c_adapter: fail to read\n");
return -EFAULT;
}
} else {
// 写数据
printk(KERN_INFO "write data from %p to %p\n", msgs[i].buf,
dev->mem);
if (copy_from_user(dev->mem, msgs[i].buf, msgs[i].len)) {
printk(KERN_INFO "i2c_adapter: fail to write\n");
return -EFAULT;
}
}
}
return 0;
}
static u32 i2c_test_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm i2c_test_algo = {
.master_xfer = i2c_test_xfer,
.functionality = i2c_test_func // 决定适配器支持什么类型的i2c器件
};
static struct i2c_board_info i2c_mem_dev = {
//I2C_BOARD_INFO("24c08", 0x50),
//.platform_data = &at24c08
.type = "i2c_mem",
.addr = 0x23
};
static int i2c_test_probe(struct platform_device *pdev)
{
struct myi2c_dev *dev;
int ret;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->mem = kzalloc(PAGE_LEN, GFP_KERNEL);
if (!dev->mem)
return -ENOMEM;
// 设置适配器私有数据
i2c_set_adapdata(&dev->adapter, dev);
// 添加i2c适配器, 使用指定的总线号
dev->adapter.owner = THIS_MODULE;
//dev->adapter.class = I2C_CLASS_DEPRECATED;
strcpy(dev->adapter.name, "i2c test adapter");
dev->adapter.algo = &i2c_test_algo;
dev->adapter.dev.parent = &pdev->dev;
dev->adapter.nr = pdev->id;
ret = i2c_add_numbered_adapter(&dev->adapter);
// 手动添加i2c_client,本来应该在板级文件或设备树中添加
dev->client = i2c_new_device(&dev->adapter, &i2c_mem_dev);
if (!dev->client) {
printk(KERN_INFO "fail to register i2c_client\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "test probe!\n");
return 0;
}
static int i2c_test_remove(struct platform_device *pdev)
{
struct myi2c_dev *dev = platform_get_drvdata(pdev);
i2c_unregister_device(dev->client);
i2c_del_adapter(&dev->adapter);
kfree(dev->mem);
kfree(dev);
printk(KERN_INFO "i2c test remove!\n");
return 0;
}
static struct platform_driver i2c_test_driver = {
.probe = i2c_test_probe,
.remove = i2c_test_remove,
.driver = {
.name = "i2c_test_module",
.owner = THIS_MODULE
}
};
module_platform_driver(i2c_test_driver);
MODULE_AUTHOR("colourfate " );
MODULE_LICENSE("GPL v2");
i2c_adapter的添加:
这里使用了platform驱动框架,我们直接看probe函数。这里首先使用i2c_set_adapdata()
函数设置i2c_adapter的私有数据,可以看到i2c_adapter
实际上是device
的子类,而这个私有数据也是设置在device
中的:
static inline void i2c_set_adapdata(struct i2c_adapter *dev, void *data)
{
dev_set_drvdata(&dev->dev, data);
}
接下来对i2c_adapter进行配置,其中配置了dev->adapter.algo = &i2c_test_algo
,这很重要,因为它决定了i2c适配器是如何工作的,同时还配置了dev->adapter.nr = pdev->id
,这是i2c适配器的编号,通过编号可以找到唯一指定的适配器。
接下来使用i2c_add_numbered_adapter()
函数将适配器添加到系统。该函数指定了i2c_adapter()
的总线号,同时可以使用i2c_add_adapter()
函数让系统自动分配总线号。
--- drivers --- i2c --- i2c_core.c --- i2c_add_numbered_adapter( --- if (adap->nr == -1)
| | struct i2c_adapter *adap) | i2c_add_adapter(adap);
| | |- __i2c_add_numbered_adapter(adap);
| |- __i2c_add_numbered_adapter( --- id = idr_alloc(&i2c_adapter_idr,adap,adap->nr,adap->nr+1,GFP_KERNEL)
| | struct i2c_adapter *adap) |- i2c_register_adapter(adap)
| |- i2c_register_adapter( --- INIT_LIST_HEAD(&adap->userspace_clients)
| | struct i2c_adapter *adap) |- dev_set_name(&adap->dev, "i2c-%d", adap->nr)
| | |- adap->dev.bus = &i2c_bus_type
| | |- adap->dev.type = &i2c_adapter_type
| | |- device_register(&adap->dev)
| | |- bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
| |- __process_new_adapter( --- i2c_do_add_adapter(to_i2c_driver(d), data)
| | struct device_driver *d,
| | void *data)
| |- i2c_do_add_adapter( --- i2c_detect(adap, driver)
| | struct i2c_driver *driver, |- 这里是废弃的driver->attach_adapter方法
| | struct i2c_adapter *adap)
| |- i2c_detect( --- address_list = driver->address_list
| | struct i2c_adapter *adapter, |- if (!driver->detect || !address_list)
| | struct i2c_driver *driver) | return 0;
| | |- temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL)
| | |- temp_client->adapter = adapter
| | |- for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
| | | temp_client->addr = address_list[i];
| | | err = i2c_detect_address(temp_client, driver);
| | | err不是错误码,则break;
| | | }
| | |- kfree(temp_client)
| |- i2c_detect_address( --- struct i2c_board_info info
| | struct i2c_client *temp_client, |- adapter = temp_client->adapter
| | struct i2c_driver *driver) |- addr = temp_client->addr
| | |- info.addr = addr
| | |- driver->detect(temp_client, &info)
| | |- if (info.type[0] == '\0')
| | | 报错;
| | | else {
| | | struct i2c_client *client;
| | | client = i2c_new_device(adapter, &info);
| | | list_add_tail(&client->detected, &driver->clients);
| | | }
|
|- base --- bus.c --- bus_for_each_drv( --- while ((drv = next_driver(&i)) && !error)
struct bus_type *bus, |- error = fn(drv, data);
struct device_driver *start,
void *data,
int (*fn)(struct device_driver *, void *))
i2c_add_numbered_adapter
展开后涉及很多函数,首先可以追到i2c_register_adapter()
函数,该函数首先使用dev_set_name()
设定了总线名称为i2c-%d
,其中%d为总线号,然后设定了总线名称和从总线类型,并用device_register()
函数注册设备,该函数在platform驱动中已经详细分析,这里不展开,最后遍历总线上的所有驱动,并执行__process_new_adapter()
函数。
从__process_new_adapter()
函数直接调用了i2c_do_add_adapter()
函数,其中to_i2c_driver
宏是由device_driver
父类得到i2c_driver
子类。
i2c_do_add_adapter()
函数实际上就是一个i2c_detect()
函数,下面废弃的函数我们不分析。
i2c_detect()
中,如果没有定义driver->address_list
和driver->detect
,则直接跳出,i2c_driver
是下面讲到的外设驱动部分,这里没有定义这两个变量,所以到这里添加适配器就完成,由于我们没有在驱动中定义address_list
和detect
,所以不会有i2c_client
添加进来,所以这里是手动添加的i2c_client
。我们也可以继续分析。
接下来申请一个temp_client
,然后将适配器与之绑定,然后遍历address_list
,并将address_list[i]
绑定到temp_client
上,然后执行i2c_detect_address
进入i2c_detect_address()
函数,该函数实际上是声明了一个struct i2c_board_info
变量,然后使用driver->detect
填充该变量,然后使用i2c_new_device()
新申请了一个i2c_client
,将adapter
与之绑定,并使用info
的信息初始化它,这个函数下来会分析。最后使用list_add_tail()
添加到链表完成client的添加工作。
i2c_client的添加:
这里实际就用了一个i2c_new_device()
函数完成client的添加
--- drivers --- i2c --- i2c_core.c --- i2c_new_device( --- client = kzalloc(sizeof *client, GFP_KERNEL)
struct i2c_adapter *adap, |- client->adapter = adap
struct i2c_board_info const *info) |- client->dev.platform_data = info->platform_data
|- client->flags = info->flags
|- client->addr = info->addr
|- client->irq = info->irq
|- strlcpy(client->name, info->type, sizeof(client->name))
|- client->dev.bus = &i2c_bus_type
|- client->dev.type = &i2c_client_type
|- device_register(&client->dev)
我不准备具体分析接下来的代码了,因为代码树列出了函数调用中的关键部分,再结合linux内核源码应该能很容易看懂(毕竟内核源码非常规范),之前的分析只是照着源码复述了一遍,意义不大。当然如果有容易搞错的关键部分我还是会说明。引用linus名言:
Read the fucking source code!
#include
#include
#include
#include
#include
#include
#include
#include
struct i2c_memery_dev {
struct miscdevice miscdev;
struct i2c_client *client;
};
ssize_t i2c_mem_read(struct file *filp, char __user *buf,
size_t count, loff_t *ppos)
{
// misc注册时自动将miscdevice的指针放到private_data中,这就是
// 为什么在i2c_memery_dev中要使用miscdevice的实体,而不是指针
struct i2c_memery_dev *dev = container_of(filp->private_data,
struct i2c_memery_dev, miscdev);
struct i2c_msg msg;
int ret;
// 构建i2c_msg
msg.addr = dev->client->addr;
msg.flags = I2C_M_RD;
msg.buf = buf;
msg.len = count;
// 调用适配器发送, 返回值为client->adapter->algo->master_xfer函数的
// 返回值
ret = i2c_transfer(dev->client->adapter, &msg, 1);
if (ret < 0) {
printk(KERN_INFO "fail to transfer\n");
return 0;
}
printk(KERN_INFO "count=%d\n", count);
return count;
}
ssize_t i2c_mem_write (struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
struct i2c_memery_dev *dev = container_of(filp->private_data,
struct i2c_memery_dev, miscdev);
struct i2c_msg msg;
int ret;
// 构建i2c_msg
msg.addr = dev->client->addr;
msg.flags = 0;
msg.buf = buf;
msg.len = count;
// 调用适配器发送
ret = i2c_transfer(dev->client->adapter, &msg, 1);
if (ret < 0) {
printk(KERN_INFO "fail to transfer\n");
return 0;
}
printk(KERN_INFO "count=%d\n", count);
return count;
}
static int i2c_mem_release(struct inode *inode, struct file *filp)
{
printk(KERN_INFO "i2c_mem release\n");
return 0;
}
static int i2c_mem_open(struct inode *inode, struct file *filp)
{
printk(KERN_INFO "i2c_mem open\n");
return 0;
}
static const struct file_operations i2c_mem_fops = {
.write = i2c_mem_write,
.read = i2c_mem_read,
.open = i2c_mem_open,
.release = i2c_mem_release
};
static int i2c_mem_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_memery_dev *dev;
int ret;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
printk(KERN_INFO "i2c_mem_probe:fail to kzalloc\n");
return -ENOMEM;
}
// 设置杂散类设备驱动
dev->miscdev.minor = MISC_DYNAMIC_MINOR;
dev->miscdev.name = "i2c_mem";
dev->miscdev.fops = &i2c_mem_fops;
// 设置私有数据
dev->client = client;
dev_set_drvdata(&client->dev, dev);
ret = misc_register(&dev->miscdev);
if (ret < 0) {
return ret;
}
return 0;
}
static int i2c_mem_remove(struct i2c_client *client)
{
struct i2c_memery_dev *dev = dev_get_drvdata(&client->dev);
misc_deregister(&dev->miscdev);
return 0;
}
static const struct i2c_device_id i2c_mem_ids[] = {
{"i2c_mem", 0}
};
static struct i2c_driver i2c_mem_driver = {
.driver = {
.name = "i2c_mem",
.owner = THIS_MODULE,
},
.probe = i2c_mem_probe,
.remove = i2c_mem_remove,
.id_table = i2c_mem_ids,
};
static int __init i2c_mem_test_init(void)
{
return i2c_add_driver(&i2c_mem_driver);
}
module_init(i2c_mem_test_init);
static void __exit i2c_mem_test_exit(void)
{
i2c_del_driver(&i2c_mem_driver);
}
module_exit(i2c_mem_test_exit);
MODULE_AUTHOR("colourfate " );
MODULE_LICENSE("GPL v2");
设备驱动主要是向系统注册i2c_driver
这个结构,然后在总线驱动中,我们注册了一个i2c_client
,此时注册驱动就会遍历总线所有设备,然后对所有设备和驱动调用bus->match
这个函数来判断设备和驱动是否匹配,这个地方和platform驱动非常相似(毕竟它们都是总线驱动),只是这个地方的bus->match
是i2c_bus_type
的匹配函数。
匹配过后就可以执行probe函数进行初始化,这里设备驱动使用了杂散类设备驱动框架,只实现了其中的read和write函数
i2c_driver的注册:
注册主要调用的是i2c_add_driver()
宏,这个宏调用了i2c_register_driver()
函数。
#define i2c_add_driver(driver) \
i2c_register_driver(THIS_MODULE, driver)
接下来分析i2c_register_driver
函数
--- drivers --- i2c --- i2c_core.c --- i2c_register_driver( --- driver->driver.bus = &i2c_bus_type
| struct module *owner, |- INIT_LIST_HEAD(&driver->clients)
| struct i2c_driver *driver) |- driver_register(&driver->driver)
| |- i2c_for_each_dev(driver, __process_new_driver)
|- i2c_for_each_dev( --- bus_for_each_dev(&i2c_bus_type, NULL, data, fn)
| void *data,
| int (*fn)(struct device *, void *))
|- __process_new_driver( --- if (dev->type != &i2c_adapter_type)
struct device *dev, | return 0;
void *data) |- i2c_do_add_adapter(data, to_i2c_adapter(dev));
可以看到这里面有两个关键函数都已经分析过了,一个是在platform驱动中分析过的driver_register()
函数,一个是刚刚分析过的i2c_do_add_adapter()
函数。这里其实就是向系统注册驱动,并遍历i2c_bus上的所有设备,然后再对所有设备执行i2c_do_add_adapter
,尝试生成i2c_client
,由于这里没有定义detect
函数,而是手动添加的i2c_client
,所以全部返回0.
在driver_register()
函数中完成了i2c_client
和i2c_driver
的匹配,但是这里调用的是i2c_bus_type->match
函数,下面看看它们是如何匹配的。先找到其定义,再找到定义总绑定的函数。
// driver/i2c/i2c_core.c
struct bus_type i2c_bus_type = {
.name = "i2c",
.match = i2c_device_match,
.probe = i2c_device_probe,
.remove = i2c_device_remove,
.shutdown = i2c_device_shutdown,
};
static int i2c_device_match(struct device *dev, struct device_driver *drv)
{
struct i2c_client *client = i2c_verify_client(dev);
struct i2c_driver *driver;
/* Attempt an OF style match */
if (i2c_of_match_device(drv->of_match_table, client))
return 1;
/* Then ACPI style match */
if (acpi_driver_match_device(dev, drv))
return 1;
driver = to_i2c_driver(drv);
/* Finally an I2C match */
if (i2c_match_id(driver->id_table, client))
return 1;
return 0;
}
这个函数实际上和platform_bus_type->match
大同小异,先匹配设备树,然后匹配id,就是说如果i2c_client
和i2c_driver
的名字设置相同的话就能够完成匹配。
如果认真分析了以上I2C驱动实现的具体代码,我们会发现Linux的I2C驱动框架实际上分三层,分别是:I2C设备驱动、I2C核心、I2C总线驱动。
I2C设备驱动定义了外设的交互方式,对与不同的I2C外设需要不同的设备驱动。I2C设备驱动对上和用户应用程序打交道,对下和I2C核心对接。
I2C核心是I2C驱动框架的主体,它定义了一系列API供设备驱动和总线驱动使用,相当于一个标准的函数调用规范。
I2C总线驱动定义了平台上I2C的工作方式,只要平台不变这部分代码就可以通用。I2C总线驱动是最底层的驱动,它上面是I2C核心,下面是SOC中的I2C适配器硬件,I2C适配器硬件上面连接了的我们的I2C外设。
分别编译好三个驱动模块,然后插入到系统,可以看到/dev/
目录下出现了i2c_mem
设备文件。写两个读和写app来测试驱动,这里写的app是通用的,以后也会使用这些它们来测试其他驱动。
首先是read.c:
#include
#include
#include
#include
#include
#include
int main(int argc, char **argv)
{
int fd, count, ret;
char buf[128] = {0};
if (argc != 3) {
printf("usage: ./read \n" );
return -1;
}
fd = open(argv[1], O_RDWR);
if (fd < 0) {
perror("open");
return -1;
}
count = atoi(argv[2]);
if (count > 128) {
count = 128;
printf("warn: count > 128\n");
} else if (count < 1) {
count = 1;
printf("warn: count < 1\n");
}
ret = read(fd, buf, count);
if (ret < 0) {
perror("read");
return -1;
}
printf("read %d byte: %s\n", ret, buf);
close(fd);
return 0;
}
然后是write.c:
#include
#include
#include
#include
#include
#include
int main(int argc, char **argv)
{
int fd, count, ret;
if (argc != 3) {
printf("usage: ./write \n" );
return -1;
}
fd = open(argv[1], O_RDWR);
if (fd < 0) {
perror("open");
return -1;
}
ret = write(fd, argv[2], strlen(argv[2]));
if (ret < 0) {
perror("write");
return -1;
}
printf("write %d byte\n", ret);
close(fd);
return 0;
}
编译好之后执行./write /dev/i2c_mem helloworld
写入数据,然后使用./read /dev/i2c_mem 10
读出数据。我这里是直接在开发板上测试的。