初识tesseract-ocr

最近闲来无事,想研究下图片识别,经过一番搜索,决定研究研究tesseract

首先是一些基础概念

  • OCR(Optical Character Recognition):光学字符识别,是指对图片文件中的文字进行分析识别,获取的过程。
  • Tesseract:开源的OCR识别引擎,初期Tesseract引擎由HP实验室研发,后来贡献给了开源软件业,后经由Google进行改进,消除bug,优化,重新发布。当前版本为3.01.

首先介绍windows中使用命令行来使用Tesseract

  1. 下载安装Tesseract-OCR引擎(3.0版本+才支持中文识别) 下载链接 tesseract-ocr-setup-3.02.02
  2. 下载完后进行安装,默认情况下安装程序会给你配置系统环境变量,以指向安装目录(之后可以通过DOS界面在任意目录运行tesseract)。安装完成后目录如下:
    初识tesseract-ocr_第1张图片
     tessdata 目录存放的是语言字库文件,和在命令行界面中可能用到的参数所对应的文件.  这个安装程序默认包含了英文字库。

    如果想能识别中文,可以到https://github.com/tesseract-ocr/tessdata下载对应的语言的字库文件. 

  3. 使用Tessract-OCR引擎识别验证码
    打开DOS界面,输入tesseract,出现下图证明成功
    初识tesseract-ocr_第2张图片
  4. 我准备了一张验证码code.png放在D盘根目录下的test文件夹下,上图:
     

     查看result.txt中解析结果

    解析成功
  5. 那对中文的解析如何,准备一张中文图片

     
     ,在上述github上下载对应的中文语言库文件,键入命令 tesseract zhongwen.png result -l chi_sim,显示指定语言为中文,然后会发现控制台输出read_params_file: parameter not found: allow_blob_division,这是由于我们使用的版本是3.02,而github最新的资源版本已经是3.04了,这边我们下载个3.02版本下的中文简体字体就可以了,传送门http://download.csdn.net/detail/u011538446/9439080替换后执行结果为
    识别准确率还是可以的,毕竟我们还可以通过训练提高识别的准群率
  6. 附录:

    Usage:tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile...]
    pagesegmode values are:
    0 = Orientation and script detection (OSD) only.
    1 = Automatic page segmentation with OSD.
    2 = Automatic page segmentation, but no OSD, or OCR
    3 = Fully automatic page segmentation, but no OSD. (Default)
    4 = Assume a single column of text of variable sizes.
    5 = Assume a single uniform block of vertically aligned text.
    6 = Assume a single uniform block of text.
    7 = Treat the image as a single text line.
    8 = Treat the image as a single word.
    9 = Treat the image as a single word in a circle.
    10 = Treat the image as a single character.
    -l lang and/or -psm pagesegmode must occur before anyconfigfile.

     

    tesseract imagename outputbase [-l lang] [-psm pagesegmode] [configfile...]

    tesseract    图片名  输出文件名 -l 字库文件 -psm pagesegmode 配置文件

    例如:

    tesseract code.jpg result  -l chi_sim -psm 7 nobatch

    -l chi_sim 表示用简体中文字库(需要下载中文字库文件,解压后,存放到tessdata目录下去,字库文件扩展名为  .raineddata 简体中文字库文件名为:  chi_sim.traineddata)

    -psm 7 表示告诉tesseract code.jpg图片是一行文本  这个参数可以减少识别错误率.  默认为 3

    configfile 参数值为tessdata\configs 和  tessdata\tessconfigs 目录下的文件名

  7. 多数情况下,我们需要在程序中动态的调用,这边我们以java为例,演示如何在java中动态调用tesseract进行图像识别,我们在代码中识别下述的图片


    初识tesseract-ocr_第3张图片
     下面是核心代码
    package com.layou;
    
    import java.io.BufferedReader;
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.InputStreamReader;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.jdesktop.swingx.util.OS;
    
    public class OCRHelper {
    	private final String LANG_OPTION = "-l";
    	private final String EOL = System.getProperty("line.separator");
    
    	private String tessPath = "D://Program Files (x86)//Tesseract-OCR";
    
    	/**
    	 * @param imageFile
    	 *            传入的图像文件
    	 * @param imageFormat
    	 *            传入的图像格式
    	 * @return 识别后的字符串
    	 */
    	public String recognizeText(File imageFile) throws Exception {
    		/**
    		 * 设置输出文件的保存的文件目录
    		 */
    		File outputFile = new File(imageFile.getParentFile(), "output");
    
    		StringBuffer strB = new StringBuffer();
    		List cmd = new ArrayList();
    		if (OS.isWindowsXP()) {
    			cmd.add(tessPath + "\\tesseract");
    		} else if (OS.isLinux()) {
    			cmd.add("tesseract");
    		} else {
    			cmd.add(tessPath + "\\tesseract");
    		}
    		cmd.add("");
    		cmd.add(outputFile.getName());
    		cmd.add(LANG_OPTION);
    		// cmd.add("chi_sim");
    		cmd.add("eng");
    
    		ProcessBuilder pb = new ProcessBuilder();
    		/**
    		 * Sets this process builder's working directory.
    		 */
    		pb.directory(imageFile.getParentFile());
    		cmd.set(1, imageFile.getName());
    		pb.command(cmd);
    		pb.redirectErrorStream(true);
    		Process process = pb.start();
    		// tesseract.exe 1.jpg 1 -l chi_sim
    		// Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim");
    		/**
    		 * the exit value of the process. By convention, 0 indicates normal
    		 * termination.
    		 */
    		// System.out.println(cmd.toString());
    		int w = process.waitFor();
    		if (w == 0) // 0代表正常退出
    		{
    			BufferedReader in = new BufferedReader(new InputStreamReader(new FileInputStream(outputFile.getAbsolutePath() + ".txt"), "UTF-8"));
    			String str;
    
    			while ((str = in.readLine()) != null) {
    				strB.append(str).append(EOL);
    			}
    			in.close();
    		} else {
    			String msg;
    			switch (w) {
    			case 1:
    				msg = "Errors accessing files. There may be spaces in your image's filename.";
    				break;
    			case 29:
    				msg = "Cannot recognize the image or its selected region.";
    				break;
    			case 31:
    				msg = "Unsupported image format.";
    				break;
    			default:
    				msg = "Errors occurred.";
    			}
    			throw new RuntimeException(msg);
    		}
    		new File(outputFile.getAbsolutePath() + ".txt").delete();
    		return strB.toString().replaceAll("\\s*", "");
    	}
    }
    
     
     
    package com.layou;
    
    import java.io.File;
    
    public class Test {
    	public static void main(String[] args) {
    		try {
    
    			File testDataDir = new File("D://test");
    			System.out.println(testDataDir.listFiles().length);
    			int i = 0;
    			for (int j=0; j<24; j++) {
    				i++;
    				String recognizeText = new OCRHelper().recognizeText(new File("D://test/code" + j + ".jpg"));
    				System.out.print(recognizeText + "\t");
    
    				if (i % 8 == 0) {
    					System.out.println();
    				}
    			}
    
    		} catch (Exception e) {
    			e.printStackTrace();
    		}
    
    	}
    }
    
     运行结果如下
     

    运行结果还是相当令人满意的
  8.  当然了,有时候图片被扭曲或者模糊的很厉害,很不容易识别,所以下面我给大家介绍一个去噪的辅助类,绝对碉堡了,先看下效果图。
    初识tesseract-ocr_第4张图片
     

    一个类,不依赖任何jar,把图像中的干扰线消灭了,是不是很给力,然后再拿这样的图片去识别,会不会效果更好呢,嘿嘿,大家自己实验~

    package com.layou;
    
    import java.awt.Color;
    import java.awt.image.BufferedImage;
    import java.io.File;
    import java.io.IOException;
    
    import javax.imageio.ImageIO;
    
    public class ClearImageHelper {
    
    	public static void main(String[] args) throws IOException {
    
    		File testDataDir = new File("d://test");
    		final String destDir = testDataDir.getAbsolutePath() + "/tmp";
    		for (File file : testDataDir.listFiles()) {
    			cleanImage(file, destDir);
    		}
    
    	}
    
    	/**
    	 * 
    	 * @param sfile
    	 *            需要去噪的图像
    	 * @param destDir
    	 *            去噪后的图像保存地址
    	 * @throws IOException
    	 */
    	public static void cleanImage(File sfile, String destDir) throws IOException {
    		File destF = new File(destDir);
    		if (!destF.exists()) {
    			destF.mkdirs();
    		}
    
    		BufferedImage bufferedImage = ImageIO.read(sfile);
    		int h = bufferedImage.getHeight();
    		int w = bufferedImage.getWidth();
    
    		// 灰度化
    		int[][] gray = new int[w][h];
    		for (int x = 0; x < w; x++) {
    			for (int y = 0; y < h; y++) {
    				int argb = bufferedImage.getRGB(x, y);
    				// 图像加亮(调整亮度识别率非常高)
    				int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);
    				int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);
    				int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);
    				if (r >= 255) {
    					r = 255;
    				}
    				if (g >= 255) {
    					g = 255;
    				}
    				if (b >= 255) {
    					b = 255;
    				}
    				gray[x][y] = (int) Math.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2) * 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);
    			}
    		}
    
    		// 二值化
    		int threshold = ostu(gray, w, h);
    		BufferedImage binaryBufferedImage = new BufferedImage(w, h, BufferedImage.TYPE_BYTE_BINARY);
    		for (int x = 0; x < w; x++) {
    			for (int y = 0; y < h; y++) {
    				if (gray[x][y] > threshold) {
    					gray[x][y] |= 0x00FFFF;
    				} else {
    					gray[x][y] &= 0xFF0000;
    				}
    				binaryBufferedImage.setRGB(x, y, gray[x][y]);
    			}
    		}
    
    		// 矩阵打印
    		for (int y = 0; y < h; y++) {
    			for (int x = 0; x < w; x++) {
    				if (isBlack(binaryBufferedImage.getRGB(x, y))) {
    					System.out.print("*");
    				} else {
    					System.out.print(" ");
    				}
    			}
    			System.out.println();
    		}
    
    		ImageIO.write(binaryBufferedImage, "jpg", new File(destDir, sfile.getName()));
    	}
    
    	public static boolean isBlack(int colorInt) {
    		Color color = new Color(colorInt);
    		if (color.getRed() + color.getGreen() + color.getBlue() <= 300) {
    			return true;
    		}
    		return false;
    	}
    
    	public static boolean isWhite(int colorInt) {
    		Color color = new Color(colorInt);
    		if (color.getRed() + color.getGreen() + color.getBlue() > 300) {
    			return true;
    		}
    		return false;
    	}
    
    	public static int isBlackOrWhite(int colorInt) {
    		if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730) {
    			return 1;
    		}
    		return 0;
    	}
    
    	public static int getColorBright(int colorInt) {
    		Color color = new Color(colorInt);
    		return color.getRed() + color.getGreen() + color.getBlue();
    	}
    
    	public static int ostu(int[][] gray, int w, int h) {
    		int[] histData = new int[w * h];
    		// Calculate histogram
    		for (int x = 0; x < w; x++) {
    			for (int y = 0; y < h; y++) {
    				int red = 0xFF & gray[x][y];
    				histData[red]++;
    			}
    		}
    
    		// Total number of pixels
    		int total = w * h;
    
    		float sum = 0;
    		for (int t = 0; t < 256; t++)
    			sum += t * histData[t];
    
    		float sumB = 0;
    		int wB = 0;
    		int wF = 0;
    
    		float varMax = 0;
    		int threshold = 0;
    
    		for (int t = 0; t < 256; t++) {
    			wB += histData[t]; // Weight Background
    			if (wB == 0)
    				continue;
    
    			wF = total - wB; // Weight Foreground
    			if (wF == 0)
    				break;
    
    			sumB += (float) (t * histData[t]);
    
    			float mB = sumB / wB; // Mean Background
    			float mF = (sum - sumB) / wF; // Mean Foreground
    
    			// Calculate Between Class Variance
    			float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);
    
    			// Check if new maximum found
    			if (varBetween > varMax) {
    				varMax = varBetween;
    				threshold = t;
    			}
    		}
    
    		return threshold;
    	}
    }

     好拉,初步研究就到这边了,后期项目如果使用到的话,在深入研究吧,java部分参考http://blog.csdn.net/lmj623565791/article/details/23960391

你可能感兴趣的:(初识tesseract-ocr)