在caffe for windows的python接口学习(2)中,我们介绍了一种生成配置文件的方式。那种方式的前提是必须要先把原始图片转换成LMDB格式的文件才行。
如果我们已经把原始图片做成了一个列表清单(txt文件,一行一张图片),则可以不用LMDB格式作为输入数据,可以直接用ImageData作为数据源输入,代码如下:
from caffe import layers as L,params as P,to_proto
path = 'E:/CaffeDev/caffe-master/data/mypython2/'
train_list=path+'train.txt'
val_list=path+'val.txt'
train_proto=path+'train.prototxt'
val_proto=path+'val.prototxt'
def create_net(img_list,batch_size,include_acc=False):
data,label=L.ImageData(source=img_list,batch_size=batch_size,new_width=48,new_height=48,ntop=2,
transform_param=dict(crop_size=40,mirror=True))
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=16, pad=2,weight_filler=dict(type='xavier'))
relu1=L.ReLU(conv1, in_place=True)
pool1=L.Pooling(relu1, pool=P.Pooling.MAX, kernel_size=3, stride=2)
conv2=L.Convolution(pool1, kernel_size=53, stride=1,num_output=32, pad=1,weight_filler=dict(type='xavier'))
relu2=L.ReLU(conv2, in_place=True)
pool2=L.Pooling(relu2, pool=P.Pooling.MAX, kernel_size=3, stride=2)
conv3=L.Convolution(pool2, kernel_size=53, stride=1,num_output=32, pad=1,weight_filler=dict(type='xavier'))
relu3=L.ReLU(conv3, in_place=True)
pool3=L.Pooling(relu3, pool=P.Pooling.MAX, kernel_size=3, stride=2)
fc4=L.InnerProduct(pool3, num_output=1024,weight_filler=dict(type='xavier'))
relu4=L.ReLU(fc4, in_place=True)
drop4 = L.Dropout(relu4, in_place=True)
fc5 = L.InnerProduct(drop4, num_output=7,weight_filler=dict(type='xavier'))
loss = L.SoftmaxWithLoss(fc5, label)
if include_acc:
acc = L.Accuracy(fc5, label)
return to_proto(loss, acc)
else:
return to_proto(loss)
def write_net():
#
with open(train_proto, 'w') as f:
f.write(str(create_net(train_list,batch_size=64)))
#
with open(val_proto, 'w') as f:
f.write(str(create_net(val_list,batch_size=32, include_acc=True)))
if __name__ == '__main__':
write_net()
意思是第一层由原来的Data类型,变成了ImageData类型,这种类型不需要LMDB文件和均值文件,但是需要一个txt文件。