1、使用逻辑回归解决Mnist分类
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 13 18:13:08 2019
@author: 无限未来
"""
import tensorflow as tf
import numpy as np
import scipy.io as scio
import random
import matplotlib.pyplot as plt
# 读取数据
data_path='G:\DeepLearning\吴恩达作业\ex3data1.mat'
data = scio.loadmat(data_path)
X = data['X']
YY = data['y']
# 独热编码转换
Y = np.zeros([5000,10])
for i in range(5000):
Y[i,YY[i]-1] = 1
pic_show = np.zeros([200,200])
content = np.zeros([20,20])
pic_choose = random.sample(range(5000), 100)
for i in range(10):
for j in range(10):
#order='F'列优先
content = X[pic_choose[(i*10+j)],:].reshape(20,20,order='F')
pic_show[i*20:(i*20+20),j*20:(j*20+20)] = content
plt.figure("example") #
plt.rcParams['figure.dpi'] = 200 #分辨率
plt.rcParams['savefig.dpi'] = 200 #图片像素
plt.imshow(pic_show) # 二维数组的数据
# 训练模型
tf.reset_default_graph()
# tf Graph Input
x = tf.placeholder(tf.float32, [None, 400]) # mnist data维度
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 数字=> 10 classes
# Set model weights
W = tf.Variable(tf.random_normal([400, 10]))
b = tf.Variable(tf.zeros([10]))
# 构建模型
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax分类
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
#参数设置
learning_rate = 0.2
# 使用梯度下降优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# 训练样本集250次,训练批量为100,每训练10次展示一次
training_epochs = 250
batch_size = 100
display_step = 10
# 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())# Initializing OP
# 启动循环开始训练
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(5000/batch_size)
# 遍历全部数据集
for i in range(total_batch):
batch_xs = X[i*batch_size:(i+1)*batch_size,:]
batch_ys = Y[i*batch_size:(i+1)*batch_size,:]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# 显示训练中的详细信息
if (epoch+1) % display_step == 0:
print ("次数:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print( "完成!")
# 测试 model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# 计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print ("准确率:", accuracy.eval({x: X, y: Y}))
2、采用神经网络解决(单隐藏层,25节点)
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 13 22:15:01 2019
@author: 无限未来
"""
import tensorflow as tf
import numpy as np
import scipy.io as scio
import random
import matplotlib.pyplot as plt
# 读取数据
data_path='G:\DeepLearning\吴恩达作业\ex3data1.mat'
data = scio.loadmat(data_path)
X = data['X']
YY = data['y']
Y = np.zeros([5000,10])
for i in range(5000):
Y[i,YY[i]-1] = 1
pic_show = np.zeros([200,200])
content = np.zeros([20,20])
pic_choose = random.sample(range(5000), 100)
for i in range(10):
for j in range(10):
#order='F'列优先
content = X[pic_choose[(i*10+j)],:].reshape(20,20,order='F')
pic_show[i*20:(i*20+20),j*20:(j*20+20)] = content
plt.figure("example") #
plt.rcParams['figure.dpi'] = 200 #分辨率
plt.rcParams['savefig.dpi'] = 200 #图片像素
plt.imshow(pic_show) # 二维数组的数据
# 训练模型
tf.reset_default_graph()
#参数设置
learning_rate = 0.01
training_epochs = 250
batch_size = 100
display_step = 10
# Network Parameters
n_hidden = 25
n_input = 400 # MNIST data 输入 (img shape: 28*28)
n_classes = 10 # MNIST 列别 (0-9 ,一共10类)
# tf Graph Input
x = tf.placeholder(tf.float32, [None, n_input]) # mnist data维度
y = tf.placeholder(tf.float32, [None, n_classes]) # 0-9 数字=> 10 classes
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h']), biases['b'])
layer_1 = tf.nn.sigmoid(layer_1)
# Output layer with linear activation
out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h': tf.Variable(tf.random_normal([n_input, n_hidden])),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'b': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# 构建模型
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# 初始化变量
init = tf.global_variables_initializer()
# 启动session
with tf.Session() as sess:
sess.run(init)
# 启动循环开始训练
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(5000/batch_size)
# 遍历全部数据集
for i in range(total_batch):
batch_xs = X[i*batch_size:(i+1)*batch_size,:]
batch_ys = Y[i*batch_size:(i+1)*batch_size,:]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# 显示训练中的详细信息
if (epoch+1) % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print (" Finished!")
# 测试 model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# 计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("准确率:", accuracy.eval({x: X, y: Y}))