作业链条化编程
[MAP+ / REDUCE MAP*]
实现功能:
单词统计
需求:
1、过滤敏感词汇
2、过滤单词出现小于5的词汇
链条结构:
MapMapper1(映射) + MapMapper2(过滤敏感词汇) + Reducer(聚合) + ReduceMapper1(过滤小于5的词汇)
WCApp.class
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/*
作业链条化编程
[MAP+ / REDUCE MAP*]
实现功能:
单词统计
需求:
1、过滤敏感词汇
2、过滤单词出现小于5的词汇
链条结构:
MapMapper1(映射) + MapMapper2(过滤敏感词汇) + Reducer(聚合) + ReduceMapper1(过滤小于5的词汇)
*/
public class WCApp {
public static void main(String[] args) throws Exception {
System.setProperty("hadoop.home.dir", "H:\\hadoop-2.4.1");
Configuration conf = new Configuration();
//本地文件目录
conf.set("fs.defaultFS","file:///");
//先删除输出的目录
/*if (args.length > 1) {
//因为配置的是本地文件系统,而且删除的地址也是本地的,所以可以删除
FileSystem.get(conf).delete(new Path(args[1]),true);
}*/
Job job = Job.getInstance(conf);
job.setJobName("WCApp");
job.setNumReduceTasks(3); //设置Reducer的数量
job.setJarByClass(WCApp.class); //搜索类
//在Map链条上增加 MapMapper1
ChainMapper.addMapper(job,WCMapMapper1.class, LongWritable.class,Text.class,Text.class,IntWritable.class,new Configuration(false));
//在Map链条上增加 MapMapper2
ChainMapper.addMapper(job,WCMapMapper2.class, Text.class,IntWritable.class,Text.class,IntWritable.class,new Configuration(false));
//在Reduce链条上增加 Reduce
ChainReducer.setReducer(job,WCReducer.class,Text.class,IntWritable.class,Text.class,IntWritable.class,new Configuration(false));
//在Reduce链条上增加 ReduceMapper1
ChainReducer.addMapper(job,WCReduceMapper1.class,Text.class,IntWritable.class,Text.class,IntWritable.class,new Configuration(false));
job.setInputFormatClass(TextInputFormat.class); //设置输入格式
//job.setOutputFormatClass(SequenceFileOutputFormat.class); //设置输出格式
job.setOutputFormatClass(TextOutputFormat.class); //设置输出格式
//设置切片的最小和最大值
FileInputFormat.setMinInputSplitSize(job,1);
FileInputFormat.setMaxInputSplitSize(job,Long.MAX_VALUE);
FileInputFormat.setInputPaths(job, new Path("e:/mr/txt"));
FileOutputFormat.setOutputPath(job, new Path("e:/mr/out"));
//打印详细信息
job.waitForCompletion(true);
}
}
WCMapMapper1.class
import com.fresher.hdfs.mr.Util;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* MapMapper1 映射
*/
public class WCMapMapper1 extends Mapper{
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//分词
String[] words = value.toString().split(" ");
//输出
for (String word : words) {
context.write(new Text(word), new IntWritable(1));
}
System.out.println("---WCMapMapper1.map()");
context.getCounter("m",Util.getInfo(this,"map")).increment(1);
}
}
WCMapMapper2.class
import com.fresher.hdfs.mr.Util;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* MapMapper2 过滤
*/
public class WCMapMapper2 extends Mapper{
@Override
protected void map(Text key, IntWritable value, Context context) throws IOException, InterruptedException {
if (!key.toString().contains("isis")) {
context.write(key,value);
}
System.out.println("---WCMapMapper2.map()");
context.getCounter("m",Util.getInfo(this,"map")).increment(1);
}
}
WCReducer.class
import com.fresher.hdfs.mr.Util;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* Reducer 聚合
*/
public class WCReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int total = 0;
for (IntWritable v : values) {
total += v.get();
}
context.write(key,new IntWritable(total));
System.out.println("---WCReducer.reduce()");
context.getCounter("r",Util.getInfo(this,"reduce")).increment(1);
}
}
WCReduceMapper1.class
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* ReduceMapper1 过滤 小于5次的词汇
*/
public class WCReduceMapper1 extends Mapper{
@Override
protected void map(Text key, IntWritable value, Context context) throws IOException, InterruptedException {
if (value.get() >= 5) {
context.write(key,value);
}
}
}