视频的处理和图片的处理类似,只不过视频处理需要连续处理一系列图片。
一般有两种视频源,一种是直接从硬盘加载视频,另一种是获取摄像头视频。
核心函数:
cv.CaptureFromFile()
代码示例:
import cv2.cv as cv
capture = cv.CaptureFromFile('myvideo.avi')
nbFrames = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_COUNT))
#CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream
#CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream
fps = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
wait = int(1/fps * 1000/1)
duration = (nbFrames * fps) / 1000
print 'Num. Frames = ', nbFrames
print 'Frame Rate = ', fps, 'fps'
print 'Duration = ', duration, 'sec'
for f in xrange( nbFrames ):
frameImg = cv.QueryFrame(capture)
print cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_POS_FRAMES)
cv.ShowImage("The Video", frameImg)
cv.WaitKey(wait)
cv2
import numpy as np
import cv2
cap = cv2.VideoCapture('vtest.avi')
while(cap.isOpened()):
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
核心函数:
cv.CaptureFromCAM()
示例代码:
import cv2.cv as cv
capture = cv.CaptureFromCAM(0)
while True:
frame = cv.QueryFrame(capture)
cv.ShowImage("Webcam", frame)
c = cv.WaitKey(1)
if c == 27: #Esc on Windows
break
cv2
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
摄像头录制视频
import cv2.cv as cv
capture=cv.CaptureFromCAM(0)
temp=cv.QueryFrame(capture)
writer=cv.CreateVideoWriter("output.avi", cv.CV_FOURCC("D", "I", "B", " "), 5, cv.GetSize(temp), 1)
#On linux I used to take "M","J","P","G" as fourcc
count=0
while count<50:
print count
image=cv.QueryFrame(capture)
cv.WriteFrame(writer, image)
cv.ShowImage('Image_Window',image)
cv.WaitKey(1)
count+=1
从文件中读取视频并保存
import cv2.cv as cv
capture = cv.CaptureFromFile('img/mic.avi')
nbFrames = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_COUNT))
width = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH))
height = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))
fps = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
codec = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FOURCC)
wait = int(1/fps * 1000/1) #Compute the time to wait between each frame query
duration = (nbFrames * fps) / 1000 #Compute duration
print 'Num. Frames = ', nbFrames
print 'Frame Rate = ', fps, 'fps'
writer=cv.CreateVideoWriter("img/new.avi", int(codec), int(fps), (width,height), 1) #Create writer with same parameters
cv.SetCaptureProperty(capture, cv.CV_CAP_PROP_POS_FRAMES,80) #Set the number of frames
for f in xrange( nbFrames - 80 ): #Just recorded the 80 first frames of the video
frame = cv.QueryFrame(capture)
print cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_POS_FRAMES)
cv.WriteFrame(writer, frame)
cv.WaitKey(wait)
cv2
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
while(cap.isOpened()):
ret, frame = cap.read()
if ret==True:
frame = cv2.flip(frame,0)
# write the flipped frame
out.write(frame)
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
# Release everything if job is finished
cap.release()
out.release()
cv2.destroyAllWindows()
————————————————————————————————————喵星人说这是分割线————————————————————————————————————
Canny 算法是一种多级边缘识别算法。
Canny边缘识别算法可以分为以下5个步骤:
应用高斯滤波来平滑图像,目的是去除噪声。
找寻图像的强度梯度(intensity gradients)。
应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是)。
应用双阈值的方法来决定可能的(潜在的)边界。
利用滞后技术来跟踪边界。
具体原理性质的东西可以参考这里
读取本地视频处理代码示例:
import cv2.cv as cv
capture = cv.CaptureFromFile('img/myvideo.avi')
nbFrames = int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_COUNT))
fps = cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FPS)
wait = int(1/fps * 1000/1)
dst = cv.CreateImage((int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH)),
int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))), 8, 1)
for f in xrange( nbFrames ):
frame = cv.QueryFrame(capture)
cv.CvtColor(frame, dst, cv.CV_BGR2GRAY)
cv.Canny(dst, dst, 125, 350)
cv.Threshold(dst, dst, 128, 255, cv.CV_THRESH_BINARY_INV)
cv.ShowImage("The Video", frame)
cv.ShowImage("The Dst", dst)
cv.WaitKey(wait)
直接处理摄像头视频:
import cv2.cv as cv
capture = cv.CaptureFromCAM(0)
dst = cv.CreateImage((int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_WIDTH)),
int(cv.GetCaptureProperty(capture, cv.CV_CAP_PROP_FRAME_HEIGHT))), 8, 1)
while True:
frame = cv.QueryFrame(capture)
cv.CvtColor(frame, dst, cv.CV_BGR2GRAY)
cv.Canny(dst, dst, 125, 350)
cv.Threshold(dst, dst, 128, 255, cv.CV_THRESH_BINARY_INV)
cv.ShowImage("The Video", frame)
cv.ShowImage("The Dst", dst)
c = cv.WaitKey(1)
if c == 27: #Esc on Windows
break
使用OpenCV可以很简单的检测出视频中的人脸等:
import cv2.cv as cv
capture=cv.CaptureFromCAM(0)
hc = cv.Load("haarcascades/haarcascade_frontalface_alt.xml")
while True:
frame=cv.QueryFrame(capture)
faces = cv.HaarDetectObjects(frame, hc, cv.CreateMemStorage(), 1.2,2, cv.CV_HAAR_DO_CANNY_PRUNING, (0,0) )
for ((x,y,w,h),stub) in faces:
cv.Rectangle(frame,(int(x),int(y)),(int(x)+w,int(y)+h),(0,255,0),2,0)
cv.ShowImage("Window",frame)
c=cv.WaitKey(1)
if c==27 or c == 1048603: #If Esc entered
break
from: https://segmentfault.com/a/1190000003804797
https://segmentfault.com/a/1190000003804807