#include
#include
#include
#include
// 实现双线性插值图像缩放
cv::Mat BilinearInterpolation(cv::Mat srcImage)
{
CV_Assert(srcImage.data != NULL);
int srcRows = srcImage.rows;
int srcCols = srcImage.cols;
int srcStep = srcImage.step;
// 构建目标图像
cv::Mat dstImage = cv::Mat(
cv::Size(640, 480), srcImage.type(),
cv::Scalar::all(0));
int dstRows = dstImage.rows;
int dstCols = dstImage.cols;
int dstStep = dstImage.step;
// 数据定义及转换
IplImage src = srcImage;
IplImage dst = dstImage;
std::cout << "srcCols:" << srcCols << " srcRows:" <<
srcRows << "srcStep:" << srcStep << std::endl;
std::cout << "dstCols:" << dstCols << " dstRows:" <<
dstRows << "dstStep:" << dstStep << std::endl;
// 坐标定义
float srcX = 0, srcY = 0;
float t1X = 0, t1Y = 0, t1Z = 0;
float t2X = 0, t2Y = 0, t2Z = 0;
for (int j = 0; j < dstRows - 1; j++)
{
for (int i = 0; i < dstCols - 1; i++)
{
// 缩放映射关系
srcX = (i + 0.5)*((float)srcCols) / (dstCols)-0.5;
srcY = (j + 0.5)*((float)srcRows) / (dstRows)-0.5;
int iSrcX = (int)srcX;
int iSrcY = (int)srcY;
// 三通道求邻域加权值1
t1X = ((uchar*)(src.imageData + srcStep*iSrcY))[
iSrcX * 3 + 0] * (1 - std::abs(srcX - iSrcX)) +
((uchar*)(src.imageData + srcStep*iSrcY))[
(iSrcX + 1) * 3 + 0] * (srcX - iSrcX);
t1Y = ((uchar*)(src.imageData + srcStep*iSrcY))[
iSrcX * 3 + 1] * (1 - std::abs(srcX - iSrcX)) +
((uchar*)(src.imageData + srcStep*iSrcY))[
(iSrcX + 1) * 3 + 1] * (srcX - iSrcX);
t1Z = ((uchar*)(src.imageData + srcStep*iSrcY))[
iSrcX * 3 + 2] * (1 - std::abs(srcX - iSrcX)) +
((uchar*)(src.imageData + srcStep*iSrcY))[
(iSrcX + 1) * 3 + 2] * (srcX - iSrcX);
// 三通道求邻域加权值2
t2X = ((uchar*)(src.imageData + srcStep*(
iSrcY + 1)))[iSrcX * 3] * (1 - std::abs(srcX - iSrcX))
+ ((uchar*)(src.imageData + srcStep*(
iSrcY + 1)))[(iSrcX + 1) * 3] * (srcX - iSrcX);
t2Y = ((uchar*)(src.imageData + srcStep*(
iSrcY + 1)))[iSrcX * 3 + 1] * (1 - std::abs(srcX - iSrcX))
+ ((uchar*)(src.imageData + srcStep*(
iSrcY + 1)))[(iSrcX + 1) * 3 + 1] * (srcX - iSrcX);
t2Z = ((uchar*)(src.imageData + srcStep*(
iSrcY + 1)))[iSrcX * 3 + 2] * (1 - std::abs(srcX - iSrcX))
+ ((uchar*)(src.imageData + srcStep*(iSrcY + 1)))[(
iSrcX + 1) * 3 + 2] * (srcX - iSrcX);
// 根据公式求解目标图像加权
((uchar*)(dst.imageData + dstStep*j))[i * 3] =
t1X*(1 - std::abs(srcY - iSrcY)) + t2X*(
std::abs(srcY - iSrcY));
((uchar*)(dst.imageData + dstStep*j))[i * 3 + 1] =
t1Y*(1 - std::abs(srcY - iSrcY)) + t2Y*(
std::abs(srcY - iSrcY));
((uchar*)(dst.imageData + dstStep*j))[i * 3 + 2] =
t1Z*(1 - std::abs(srcY - iSrcY)) + t2Z*(
std::abs(srcY - iSrcY));
}
// 列操作
((uchar*)(dst.imageData + dstStep*j))[(dstCols - 1) * 3] =
((uchar*)(dst.imageData + dstStep*j))[(dstCols - 2) * 3];
((uchar*)(dst.imageData + dstStep*j))[(dstCols - 1) * 3 +
1] = ((uchar*)(dst.imageData + dstStep*j))[(
dstCols - 2) * 3 + 1];
((uchar*)(dst.imageData + dstStep*j))[(dstCols - 1) * 3
+ 2] = ((uchar*)(dst.imageData + dstStep*j))[(
dstCols - 2) * 3 + 2];
}
// 行操作
for (int i = 0; i < dstCols * 3; i++)
{
((uchar*)(dst.imageData + dstStep*(dstRows - 1)))[i] =
((uchar*)(dst.imageData + dstStep*(dstRows - 2)))[i];
}
return dstImage;
}
int main()
{
cv::Mat srcImage = cv::imread("..\\images\\flower3.jpg");
if (!srcImage.data)
return -1;
cv::Mat dstImage = BilinearInterpolation(srcImage);
cv::imshow("srcImage", srcImage);
cv::imshow("dstImage", dstImage);
cv::waitKey(0);
return 0;
}
转载:http://blog.csdn.net/zhuwei1988