Java 多线程编程核心技术有哪些

640.gif?wxfrom=5&wx_lazy=1

本文来自作者 后知后觉 在 GitChat 上分享「Java 多线程编程核心技术」,阅读原文」查看交流实录

文末高能

编辑 | 嘉仔

Java 多线程编程核心技术有哪些_第1张图片

一、进程与线程的概念

(1)在传统的操作系统中,程序并不能独立运行,作为资源分配和独立运行的基本单位都是进程。

在未配置 OS 的系统中,程序的执行方式是顺序执行,即必须在一个程序执行完后,才允许另一个程序执行;在多道程序环境下,则允许多个程序并发执行。

程序的这两种执行方式间有着显著的不同。也正是程序并发执行时的这种特征,才导致了在操作系统中引入进程的概念。

自从在 20 世纪 60 年代人们提出了进程的概念后,在 OS 中一直都是以进程作为能拥有资源和独立运行的基本单位的。

直到 20 世纪 80 年代中期,人们又提出了比进程更小的能独立运行的基本单位——线程(Threads),试图用它来提高系统内程序并发执行的程度,从而可进一步提高系统的吞吐量。

特别是在进入 20 世纪 90 年代后,多处理机系统得到迅速发展,线程能比进程更好地提高程序的并行执行程度,充分地发挥多处理机的优越性,因而在近几年所推出的多处理机 OS 中也都引入了线程,以改善 OS 的性能。

—–以上摘自《计算机操作系统-汤小丹等编著-3 版》

(2)下图是来自某知乎用户的解释:

Java 多线程编程核心技术有哪些_第2张图片

通过上述的大致了解,基本知道线程和进程是干什么的了,那么我们下边给进程和线程总结一下概念:

(3)进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。

在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;

在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。

(4)线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。线程是程序中一个单一的顺序控制流程。

进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派 CPU 的基本单位指运行中的程序的调度单位。

在单个程序中同时运行多个线程完成不同的工作,称为多线程。

(5)进程和线程的关系:

Java 多线程编程核心技术有哪些_第3张图片

(6)线程和进程各自有什么区别和优劣

  • 进程是资源分配的最小单位,线程是程序执行的最小单位。

  • 进程有自己的独立地址空间,每启动一个进程,系统就会为它分配地址空间,建立数据表来维护代码段、堆栈段和数据段,这种操作非常昂贵。

    而线程是共享进程中的数据的,使用相同的地址空间,因此 CPU 切换一个线程的花费远比进程要小很多,同时创建一个线程的开销也比进程要小很多,线程的上下文切换的性能消耗要小于进程。

  • 线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。

    不过如何处理好同步与互斥是编写多线程程序的难点。

  • 但是多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。

二、同步与异步

对于一次方法的调用来说,同步方法调用一旦开始,就必须等待该方法的调用返回,后续的方法才可以继续执行;

异步的话,方法调用一旦开始,就可以立即返回,调用者可以执行后续的方法,这里的异步方法通常会在另一个线程里真实的执行,而不会妨碍当前线程的执行。

三、并行与并发

并发和并行是两个相对容易比较混淆的概念。他都可以表示在同一时间范围内有两个或多个任务同时在执行,但其在任务调度的时候还是有区别的,首先看下图:

并发任务执行过程:

Java 多线程编程核心技术有哪些_第4张图片

并行任务执行过程:

Java 多线程编程核心技术有哪些_第5张图片

从上图中可以看到,两个任务在执行的时候,并发是没有时间上的重叠的,两个任务是交替执行的,由于切换的非常快,对于外界调用者来说相当于同一时刻多个任务一起执行了;

而并行可以看到时间上是由重叠的,也就是说并行才是真正意义上的同一时刻可以有多个任务同时执行。

四、Java实现多线程方式

(1)继承Thread,重写run()方法

 
   

   public class MyThread extends Thread {        @Override        public void run() {            while (true) {                System.out.println(this.currentThread().getName());            }        }        public static void main(String[] args) {            MyThread thread = new MyThread();            thread.start(); //线程启动的正确方式        }    }

输出结果:

 
   

   Thread-0    Thread-0    Thread-0    ...

另外,要明白启动线程的是 start()方法而不是run()方法,如果用run()方法,那么他就是一个普通的方法执行了。

(2)实现 Runable 接口

 
   

   public class MyRunnable implements Runnable {        @Override        public void run() {            System.out.println("123");        }        public static void main(String[] args) {            MyRunnable myRunnable = new MyRunnable();            Thread thread = new Thread(myRunnable, "t1");            thread.start();        }    }

这里Thread和Runnable的关系是这样的:

Thread类本身实现了Runnable接口,并且持有run方法,但Thread类的run方法主体是空的,Thread类的run方法通常是由子类的run方法重写。

五、线程安全

线程安全概念:当多个线程访问某一个类(对象或方法)时,这个类始终能表现出正确的行为,那么这个类(对象或方法)就是线程安全的。

线程安全就是多线程访问时,采用了加锁机制,当一个线程访问该类的某个数据时,进行保护,其他线程不能进行访问,直到该线程读取完,释放了锁,其他线程才可使用。

这样的话就不会出现数据不一致或者数据被污染的情况。 线程不安全就是不提供数据访问保护,有可能出现多个线程先后更改数据以至于所得到的数据是脏数据。这里的加锁机制常见的如:synchronized

六、synchronized修饰符

(1)synchronized:可以在任意对象及方法上加锁,而加锁的这段代码称为互斥区临界区

(2)不使用synchronized实例(代码A):

 
   

   public class MyThread extends Thread {        private int count = 5;        @Override        public void run() {            count--;            System.out.println(this.currentThread().getName() + " count:" + count);        }        public static void main(String[] args) {            MyThread myThread = new MyThread();            Thread thread1 = new Thread(myThread, "thread1");            Thread thread2 = new Thread(myThread, "thread2");            Thread thread3 = new Thread(myThread, "thread3");            Thread thread4 = new Thread(myThread, "thread4");            Thread thread5 = new Thread(myThread, "thread5");            thread1.start();            thread2.start();            thread3.start();            thread4.start();            thread5.start();        }    }

输出的一种结果如下:

 
   

   thread3 count:2    thread4 count:1    thread1 count:2    thread2 count:3    thread5 count:0

可以看到,上述的结果是不正确的,这是因为,多个线程同时操作run()方法,对count进行修改,进而造成错误。

(3)使用synchronized实例(代码B):

 
   

   public class MyThread extends Thread {        private int count = 5;        @Override        public synchronized void run() {            count--;            System.out.println(this.currentThread().getName() + " count:" + count);        }        public static void main(String[] args) {            MyThread myThread = new MyThread();            Thread thread1 = new Thread(myThread, "thread1");            Thread thread2 = new Thread(myThread, "thread2");            Thread thread3 = new Thread(myThread, "thread3");            Thread thread4 = new Thread(myThread, "thread4");            Thread thread5 = new Thread(myThread, "thread5");            thread1.start();            thread2.start();            thread3.start();            thread4.start();            thread5.start();        }    }

输出结果:

 
   

   thread1 count:4    thread2 count:3    thread3 count:2    thread5 count:1    thread4 count:0

可以看出代码A和代码B的区别就是在run()方法上加上了synchronized修饰。

说明如下:

当多个线程访问 MyThread 的 run 方法的时候,如果使用了synchronized修饰,那个多线程就会以排队的方式进行处理(这里排队是按照 CPU 分配的先后顺序而定的)。

一个线程想要执行 synchronized 修饰的方法里的代码,首先是尝试获得锁,如果拿到锁,执行 synchronized 代码体的内容。

如果拿不到锁的话,这个线程就会不断的尝试获得这把锁,直到拿到为止,而且多个线程同时去竞争这把锁,也就是会出现锁竞争的问题。

七、一个对象有一把锁!多个线程多个锁!

何为,一个对象一把锁,多个线程多个锁!首先看一下下边的实例代码(代码C):

 
   

   public class MultiThread {        private int num = 200;        public synchronized void printNum(String threadName, String tag) {            if (tag.equals("a")) {                num = num - 100;                System.out.println(threadName + " tag a,set num over!");            } else {                num = num - 200;                System.out.println(threadName + " tag b,set num over!");            }            System.out.println(threadName + " tag " + tag + ", num = " + num);        }        public static void main(String[] args) throws InterruptedException {            final MultiThread multiThread1 = new MultiThread();            final MultiThread multiThread2 = new MultiThread();            new Thread(new Runnable() {                public void run() {                    multiThread1.printNum("thread1", "a");                }            }).start();            Thread.sleep(5000);            System.out.println("等待5秒,确保thread1已经执行完毕!");            new Thread(new Runnable() {                public void run() {                    multiThread2.printNum("thread2", "b");                }            }).start();        }    }

输出结果:

 
   

   thread1 tag a,set num over!    thread1 tag a, num = 100    等待5秒,确保thread1已经执行完毕!    thread2 tag b,set num over!    thread2 tag b, num = 0

可以看出,有两个对象:multiThread1multiThread2,如果多个对象使用同一把锁的话,那么上述执行的结果就应该是:thread2 tag b, num = -100,因此,是每一个对象拥有该对象的锁的。

关键字synchronized取得的锁都是对象锁,而不是把一段代码或方法当做锁,所以上述实例代码C中哪个线程先执行synchronized 关键字的方法,那个线程就持有该方法所属对象的锁,两个对象,线程获得的就是两个不同对象的不同的锁,他们互补影响的。

那么,我们在正常的场景的时候,肯定是有一种情况的就是,所有的对象会对一个变量 count 进行操作,那么如何实现哪?

很简单就是加static,我们知道,用 static 修改的方法或者变量,在该类的所有对象是具有相同的引用的,这样的话,无论实例化多少对象,调用的都是一个方法,代码如下(代码D):

 
   

   public class MultiThread {        private static int num = 200;        public static synchronized void printNum(String threadName, String tag) {            if (tag.equals("a")) {                num = num - 100;                System.out.println(threadName + " tag a,set num over!");            } else {                num = num - 200;                System.out.println(threadName + " tag b,set num over!");            }            System.out.println(threadName + " tag " + tag + ", num = " + num);        }        public static void main(String[] args) throws InterruptedException {            final MultiThread multiThread1 = new MultiThread();            final MultiThread multiThread2 = new MultiThread();            new Thread(new Runnable() {                public void run() {                    multiThread1.printNum("thread1", "a");                }            }).start();            Thread.sleep(5000);            System.out.println("等待5秒,确保thread1已经执行完毕!");            new Thread(new Runnable() {                public void run() {                    multiThread2.printNum("thread2", "b");                }            }).start();        }    }

输出结果:

 
   

   thread1 tag a,set num over!    thread1 tag a, num = 100    等待5秒,确保thread1已经执行完毕!    thread2 tag b,set num over!    thread2 tag b, num = -100

可以看出,对变量和方法都加上了static修饰,就可以实现我们所需要的场景。同时也说明了,对于非静态static修饰的方法或变量,是一个对象一把锁的。

八、对象锁的同步和异步

(1)同步:synchronized

同步的概念就是共享,我们要知道“共享”这两个字,如果不是共享的资源,就没有必要进行同步,也就是没有必要进行加锁;

同步的目的就是为了线程的安全,其实对于线程的安全,需要满足两个最基本的特性:原子性和可见性;

(2)异步:asynchronized

异步的概念就是独立,相互之间不受到任何制约,两者之间没有任何关系,这里的异步可以理解为多个线程之间不会竞争共享资源。

(3)示例代码:

 
   

   public class MyObject {        public void method() {            System.out.println(Thread.currentThread().getName());        }        public static void main(String[] args) {            final MyObject myObject = new MyObject();            Thread t1 = new Thread(new Runnable() {                public void run() {                    myObject.method();                }            }, "t1");            Thread t2 = new Thread(new Runnable() {                public void run() {                    myObject.method();                }            }, "t2");            t1.start();            t2.start();        }    }

上述代码中method()就是异步的方法。一方面,他不会出现对共享变量的修改,另一方面,无需保证访问该方法的线程安全性。

 近期热文

3分钟了解入门「机器学习」该学习什么?(上)

3分钟了解入门「机器学习」该学习什么?(下)

正则表达式从入门到实战

《如何用 Node.js 爬虫?》

《两款敏捷工具,治好你碎片化交付硬伤》

福利

Java 多线程编程核心技术有哪些_第6张图片

「阅读原文」看交流实录,你想知道的都在这里

你可能感兴趣的:(Java 多线程编程核心技术有哪些)