- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- Amazon ECS 批处理参考架构:高效处理大规模数据
芮逸炯Conqueror
AmazonECS批处理参考架构:高效处理大规模数据ecs-refarch-batch-processingAreferencearchitectureforhandlingbatchprocessingworkloadsusingAmazonECS.项目地址:https://gitcode.com/gh_mirrors/ec/ecs-refarch-batch-processing在当今数据驱动
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- 论文阅读【CVPR-2022】3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swappi
智尊宝人工智能社区
人工智能计算机视觉
3DShapeVariationalAutoencoderLatentDisentanglementviaMini-BatchFeatureSwappingforBodiesandFaces通过小批量特征互换实现身体和脸部的三维形状变异自动编码器潜移默化studyai.com搜索论文:3DShapeVariationalAutoencoderLatentDisentanglementviaMini
- 批量将 Word 文件转换为 HTML:Python 实现指南
脑洞笔记
科普wordhtmlpython
批量将Word文件转换为HTML:Python实现指南概述工具功能实现代码代码解析1.docx_to_html函数2.batch_convert_to_html函数3.主程序概述在日常工作中,我们可能会遇到将大量Word文档(.docx)转换为HTML文件的需求,比如为了将文档内容展示到网页上,或者实现文档在线阅读功能。今天,我们将分享一个用Python编写的实用工具,支持将整个文件夹下的Word
- 【window批处理文件快速入门学习--这份文档就够了】
少年近视
批处理adb学习batch
一、简介1.1什么是批处理文件?批处理文件(BatchFile)是一种包含一系列DOS命令的文本文件,通常用于自动化重复性任务。文件的扩展名为.bat或.cmd,当在命令提示符下运行时,操作系统会按顺序执行文件中的命令。批处理文件的创建和使用为用户提供了高效的命令行操作方式。示例:创建一个简单的批处理文件,文件名为example.bat,内容如下:@echooffecho这是一个简单的批处理文件。
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 华为防火墙做单臂路由_华为单臂路由配置详解
mizore
华为防火墙做单臂路由
利用华为路由器单臂路由的配置原理,可以使同一交换机上不同VLAN之间实现通信。需要掌握以下基本概念:链路类型-交换机连接主机的端口为access链路;-交换机连接路由器的端口为trunk链路子接口-路由器的物理接口可以被划分为多个子接口;-每个子接口对应一个VLAN的网关配置拓扑图如下所示:在交换机上配置如下:[SW]vlanbatch1020[SW]interfaceEthernet0/0/2[
- 【华为网络-配置-005】-单臂路由配置
郁闷的猴子哥哥
华为网络学习
要求:1、PC1能够和PC2互相通信一、AR1配置交换机LSW1这里不再进行vlan配置。可参考链接配置1、GE0/0/1:trunk,允许vlan1020通过2、GE0/0/2:access,默认vlan103、GE0/0/3:access,默认vlan20(站内链接:vlan配置方法)创建vlan1020。[AR1]vlanbatch1020进入物理接口的子接口(接口后跟个点表示子接口,子接口
- 企业级网络架构
哦吼吼吼tian
目录三层交换机三层交换机使用过程:连接外网动态路由ospf协议,开放最短路径优先协议ospf区域区域ID骨干区域0ospf配置:传输层传输层的作用传输层两个重要的协议TCP的应用UDP应用ACL访问控制列表ACL的主要类型ACL规则三层交换机使用三层交换技术实现VLAN间通信三层交换=二层交换+三层转发三层交换机使用过程:1.添加VLAN(vlanbatch23)2.对应的接口添加相应的VLAN(
- 深度学习中的通道(Channel)概念详解
小·恐·龙
大模型深度学习人工智能
1.通道的基本概念通道(Channel)是深度学习中的一个重要概念,它在不同场景下有不同的具体含义。理解通道概念对于理解深度学习模型的结构和工作原理至关重要。2.大语言模型中的通道2.1全连接层的通道概念2.1.1基本结构输入:[batch_size,input_features]权重:[input_features,output_features]输出:[batch_size,output_fe
- SpringBoot集成OpenFeign,实现服务间的相互调用
Sao_E
我的小成就springboot后端javaspringcloud微服务
SpringBoot集成OpenFeign,实现服务间的相互调用文章目录SpringBoot集成OpenFeign,实现服务间的相互调用一、实验准备与目标二、添加依赖三、写调用接口四、写controller层五、启动类注解六、结果一、实验准备与目标有业务模块business和跑批模块batch。在business模块中设有test接口,内容如下:@RestControllerpublicclass
- SQLmap 自动注入 -02
shenghuiping2001
网络安全sqlmapsql注入webmysql
1:如果想获得SQL数据库的信息,可以加入参数:-dbssqlmap-u"http://192.168.56.133/mutillidae/index.php?page=user-info.php&username=xiaosheng&password=abc&user-info-php-submit-button=View+Account+Details"--batch-pusername-db
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- 如何有效控制 KV 缓存的内存占用,优化推理速度?
m0_70960708
笔记缓存
使用KV缓存技术的目的是在生成过程中计算过去tokens的键和值张量时,将这些张量存储(“缓存”)在GPU内存中,从而避免在每个生成步骤中重新计算这些tokens的键和值张量。KV缓存是一种妥协:我们以内存的消耗换取计算量的减少。在这篇文章中,我们将了解KV缓存的容量有多大、会带来哪些挑战,以及面对这些挑战最常用的应对策略是什么。01KV缓存的容量有多大?这相当简单:对于每个batch中每个序列的
- Pytorch 自学笔记(三):利用自定义文本数据集构建Dataset和DataLoader
JimmyTotoro
Pytorch自学笔记pytorch笔记人工智能
Pytorch自学笔记(三)1.Dataset与DataLoader1.1torch.utils.data.Dataset1.2torch.utils.data.DataLoaderPytorch自学笔记系列的第三篇。针对Pytorch的Dataset和DataLoader进行简单的介绍,同时,介绍如何使用自定义文本数据集构建Dataset和DataLoader,以实现数据集的随机采样与batch
- transformer模型代码
地瓜不是呱
学习笔记transformer深度学习pytorch
importnumpyasnpimporttorchimporttorch.nnasnnimporttorch.optimasoptimimportmatplotlib.pyplotaspltimportmathdefmake_batch(sentences):input_batch=[[src_vocab[n]forninsentences[0].split()]]output_batch=[[
- 细嗦Transformer(三):准备训练,讲解及代码实现优化器、学习率调整策略、正则化和KL散度损失
Ace_bb
算法LLMtransformer
文章目录关注我:细嗦大模型批处理对象/BatchesandMasking训练循环主函数/TrainingLoop优化器/Optimizer学习率调整策略/Learningrateadjustmentstrategy样例测试正则化/RegularizationLabelsmoothing标签平滑KL散度损失样例测试Github完整代码----求求了给个star和关注吧参考资料求求了,给个star和关
- 美图鉴赏-古风,OpenCV视频批量处理
图苑
java图像处理AIGCopencv
publicstaticvoidmixBatch(StringoutputPath,ListvideoList,intclipDuration,intnumber,intmergeDuration,ProgressCallbackcallback)throwsException{//临时裁剪文件夹StringclipTempDir=outputPath+File.separator+"_clipT
- MHA实现
谁怕平生太急
算法基础模型基础
(1)关键点说明:多头注意力机制:将输入分成多个头,每个头独立计算注意力(2)维度变换:输入:(batch_size,sequence_length,embedding_dim)多头处理:(batch_size,num_heads,sequence_length,dim_per_head)后面两项用于Q、K的计算维度变换的核心是用view和permute来进行(3)注意力计算:Q×K^T得到注意力
- vivado生成ltx文件命令_实验室自研工具Vivado Batch Mode Tool介绍!
电动星球蟹老板
vivado生成ltx文件命令
这里从两个方面分别进行说明,为什么要使用Vivado的Batchmode。1、流程操作效率我所谓的流程操作效率,是指在使用Vivado时,通过键盘输入、鼠标点击以及进行等待等实际外部操作的效率。例如我需要打开一个Vivado工程,并进行Synthesis,那么在GUI下是这样的流程操作:点击打开VivadoGUI并等待----用Vivado点击打开对应的.xpr文件并等待----点击runSynt
- 算法面试准备 - 手撕系列第一期 - Softmax
小菜鸟博士
算法面试准备-手撕系列算法人工智能面试
算法面试准备-手撕系列第一期-Softmax目录算法面试准备-手撕系列第一期-SoftmaxSoftmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)参考Softmax原理图Softmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)方法一:循环计算importtorchdefsoftmax(X):#X为Tensor向量,大小为(batch_size,len)#方
- python 代码实现了一个条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),用于生成与给定的理化值相关的光谱数据
max500600
算法开发语言python生成对抗网络开发语言
importtensorflowastfimportnumpyasnpimportpandasaspdimportosimportmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_splitfromtensorflow.keras.layersimportAdd,BatchNormalizationos.enviro
- 图片中的上采样,下采样和通道融合(up-sample, down-sample, channel confusion)
迪三
#图像处理_PyTorch计算机视觉深度学习人工智能
前言以conv2d为例(即图片),Pytorch中输入的数据格式为tensor,格式为:[N,C,W,H,W]第一维N.代表图片个数,类似一个batch里面有N张图片第二维C.代表通道数,在模型中输入如果为彩色,常用RGB三色图,那么就是3维,即C=3。如果是黑白的,即灰度图,那么只有一个通道,即C=1第三维H.代表图片的高度,H的数量是图片像素的列数第四维W.代表图片的宽度,W的数量是图片像素的
- 如何从大型语言模型(LLM)流式响应
aehrutktrjk
语言模型microsoftajaxpython
引言随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。基础知识在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invoke、batch、
- seq_len 不等于 hidden_size 难道不会报错吗,他们是一会事情吗
zhangfeng1133
python人工智能开发语言pytorch
seq_len与hidden_size在RNN中代表不同概念,不等不会报错。seq_len:序列长度,表示在处理数据时,每个批次(batch)中序列的长度。RNN网络会按照seq_len指定的长度进行循环计算1。hidden_size:隐藏层中隐藏神经元的个数,也是输出向量的长度。它决定了RNN网络中隐藏层的状态向量的维度12。在RNN的训练过程中,seq_len和hidden_si
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- ‘float‘ object cannot be interpreted as an integer
多欢喜
深度学习进阶课程error
今天写代码的时候遇到了新的问题:'float'objectcannotbeinterpretedasaninteger代码出错地方:forminibatch_indexinrange(num_training_batches):找到num_traininng_batches:num_training_batches=size(training_data)/mini_batch_size理论上感觉没
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 华为eNSP常用命令整合-视图种类-划分vlan
S+叮当猫
华为网络智能路由器
视图种类和切换:三种视图①用户视图---默认状态下为用户视图,快捷键ctrl+z切换为用户视图②系统视图---[主机名]命令system-view进入系统视图,使用快捷键ctrl+z从系统视图切换回用户视图③接口视图---[主机名-接口名]在系统视图下,输入接口号,进入接口视图第一部分:划分vlan1.创建vlan:vlanbatch23---创建两个vlan,vlan1和vlan2(不要创建名字
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理