贪心算法是寻找最优解问题的常用方法。
这种方法模式一般将求解过程分成若干个步骤,在每个步骤都应用贪心原则,选取当前状态下最好的或最优的选择(局部最有利的选择),并以此希望最后对跌出的结果也是最好的或最优的解。
贪心算法的每次决策都以当前情况作为基础并根据某个最有原则进行选择,不从整体上考虑其他各种可能的情况。
贪心算法。动态规划法、分治法都是对问题进行分解,定义最优解的子结构.
贪心算法与其他方法最大的不同在于,贪心算法每一步选择完之后,局部最优解就确定了,不再进行回溯处理,也就是说,每个步骤的局部最优解确定以后,就不再修改,直到算法结束。因为不会进行回溯,贪婪法只在很少的情况下可以得到真正的最优解,比如最短路径问题、图的最小生成树问题。
大多数情况下,贪婪法会错过真正的最优解,但是贪婪法简单高效,省去了为找最优解可能需要的穷举操作,可以得到与最优解比较接近的近似最优解,通常作为其他算法的辅助算法使用.
对于子问题的分解有多种方式,有的问题可以按照问题的求解过程一步一步地进行分解妹妹一步都在前一步的基础上选择当前做最好的解,每做一次选择就将问题简化为一个规模更小的子问题,当最后一步的求解完成后就得到了全局最优解.还有的问题可以将问题分解成相对独立的几个子问题,对每个子问题求解完成后再按照一定的规则将其组合起来得到全局最优解.
贪心算法的例子:0-1背包问题
有N件物品和一个承重为C的背包,每件物品的重量是wi(每个物品只有一件),价值是pi,求解将哪几件物品装入背包可使这些物品在重量总和不超过C的情况下价值总和最大
背包问题是此类组合优化的NP完全问题的统称,比如货箱装载问题、货船载物问题等.
这个问题的子问题可以按照选择物品装入背包的过程按部就班地一步一步分解,将子问题定义为在被包容量还有C’的情况下,选择一个物品装入背包.这样,每选择一个物品就相当于子问题的规模减小了.
如何选择物品呢?这就是贪婪策略的选择问题。对于本题,常见的贪婪策略有三种. 1.根据物品价值选择,每次都选价值最高的物品 2.根据物品重量选择,每次都选择重量最轻的物品 3.定义一个价值密度的概念,每次选择都选择价值密度最高的物品.
..然而怎么写呢..应该是不重要的..毕竟应用贪婪法得到的结果不一定是最优解..可能只是近似最优解.
在任何算法中,只要在某个阶段使用了只考虑局部最优情况的选择策略,都可以理解为使用了贪婪算法.
贪心算法的定义:
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
解题的一般步骤是:
1.建立数学模型来描述问题;
2.把求解的问题分成若干个子问题;
3.对每一子问题求解,得到子问题的局部最优解;
4.把子问题的局部最优解合成原来问题的一个解。
如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。
话不多说,我们来看几个具体的例子慢慢理解它:
1.活动选择问题
这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。
考虑使用贪心算法的解法。为了方便,我们用不同颜色的线条代表每个活动,线条的长度就是活动所占据的时间段,蓝色的线条表示我们已经选择的活动;红色的线条表示我们没有选择的活动。
如果我们每次都选择开始时间最早的活动,不能得到最优解:
如果我们每次都选择持续时间最短的活动,不能得到最优解:
可以用数学归纳法证明,我们的贪心策略应该是每次选取结束时间最早的活动。直观上也很好理解,按这种方法选择相容活动为未安排活动留下尽可能多的时间。这也是把各项活动按照结束时间单调递增排序的原因。
#include
#include
#include
using namespace std;
int N;
struct Act
{
int start;
int end;
}act[100010];
bool cmp(Act a,Act b)
{
return a.end=act[i].end)
{
i=j;
num++;
}
}
return num;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&N);
for(int i=1;i<=N;i++)
{
scanf("%lld %lld",&act[i].start,&act[i].end);
}
act[0].start=-1;
act[0].end=-1;
sort(act+1,act+N+1,cmp);
int res=greedy_activity_selector();
cout<
2.钱币找零问题
这个问题在我们的日常生活中就更加普遍了。假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0, c1, c2, c3, c4, c5, c6张。现在要用这些钱来支付K元,至少要用多少张纸币?用贪心算法的思想,很显然,每一步尽可能用面值大的纸币即可。在日常生活中我们自然而然也是这么做的。在程序中已经事先将Value按照从小到大的顺序排好。
#include
#include
using namespace std;
const int N=7;
int Count[N]={3,0,2,1,0,3,5};
int Value[N]={1,2,5,10,20,50,100};
int solve(int money)
{
int num=0;
for(int i=N-1;i>=0;i--)
{
int c=min(money/Value[i],Count[i]);
money=money-c*Value[i];
num+=c;
}
if(money>0) num=-1;
return num;
}
int main()
{
int money;
cin>>money;
int res=solve(money);
if(res!=-1) cout<
3.再论背包问题
在从零开始学动态规划中我们已经谈过三种最基本的背包问题:零一背包,部分背包,完全背包。很容易证明,背包问题不能使用贪心算法。然而我们考虑这样一种背包问题:在选择物品i装入背包时,可以选择物品的一部分,而不一定要全部装入背包。这时便可以使用贪心算法求解了。计算每种物品的单位重量价值作为贪心选择的依据指标,选择单位重量价值最高的物品,将尽可能多的该物品装入背包,依此策略一直地进行下去,直到背包装满为止。在零一背包问题中贪心选择之所以不能得到最优解原因是贪心选择无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。在程序中已经事先将单位重量价值按照从大到小的顺序排好。
#include
using namespace std;
const int N=4;
void knapsack(float M,float v[],float w[],float x[]);
int main()
{
float M=50;
//背包所能容纳的重量
float w[]={0,10,30,20,5};
//每种物品的重量
float v[]={0,200,400,100,10};
//每种物品的价值
float x[N+1]={0};
//记录结果的数组
knapsack(M,v,w,x);
cout<<"选择装下的物品比例:"<M) break;
x[i]=1;
M-=w[i];
}
//物品部分被装下
if(i<=N) x[i]=M/w[i];
}
4.多机调度问题
n个作业组成的作业集,可由m台相同机器加工处理。要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。作业不能拆分成更小的子作业;每个作业均可在任何一台机器上加工处理。这个问题是NP完全问题,还没有有效的解法(求最优解),但是可以用贪心选择策略设计出较好的近似算法(求次优解)。当n<=m时,只要将作业时间区间分配给作业即可;当n>m时,首先将n个作业从大到小排序,然后依此顺序将作业分配给空闲的处理机。也就是说从剩下的作业中,选择需要处理时间最长的,然后依次选择处理时间次长的,直到所有的作业全部处理完毕,或者机器不能再处理其他作业为止。如果我们每次是将需要处理时间最短的作业分配给空闲的机器,那么可能就会出现其它所有作业都处理完了只剩所需时间最长的作业在处理的情况,这样势必效率较低。在下面的代码中没有讨论n和m的大小关系,把这两种情况合二为一了。
#include
#include
using namespace std;
int speed[10010];
int mintime[110];
bool cmp( const int &x,const int &y)
{
return x>y;
}
int main()
{
int n,m;
memset(speed,0,sizeof(speed));
memset(mintime,0,sizeof(mintime));
cin>>n>>m;
for(int i=0;i>speed[i];
sort(speed,speed+n,cmp);
for(int i=0;i
5.小船过河问题
POJ1700是一道经典的贪心算法例题。题目大意是只有一艘船,能乘2人,船的运行速度为2人中较慢一人的速度,过去后还需一个人把船划回来,问把n个人运到对岸,最少需要多久。先将所有人过河所需的时间按照升序排序,我们考虑把单独过河所需要时间最多的两个旅行者送到对岸去,有两种方式:
1.最快的和次快的过河,然后最快的将船划回来;次慢的和最慢的过河,然后次快的将船划回来,所需时间为:t[0]+2*t[1]+t[n-1];
2.最快的和最慢的过河,然后最快的将船划回来,最快的和次慢的过河,然后最快的将船划回来,所需时间为:2*t[0]+t[n-2]+t[n-1]。
算一下就知道,除此之外的其它情况用的时间一定更多。每次都运送耗时最长的两人而不影响其它人,问题具有贪心子结构的性质。
AC代码:
#include
#include
using namespace std;
int main()
{
int a[1000],t,n,sum;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
sum=0;
for(int i=0;i3)
{
sum=min(sum+a[1]+a[0]+a[n-1]+a[1],sum+a[n-1]+a[0]+a[n-2]+a[0]);
n-=2;
}
if(n==3) sum+=a[0]+a[1]+a[2];
else if(n==2) sum+=a[1];
else sum+=a[0];
printf("%d\n",sum);
}
}
......
转载来源:https://blog.csdn.net/qq_32400847/article/details/51336300