- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- 进阶向:新手详解Neo4j关系查询代码
nightunderblackcat
Python进阶neo4jpycharmpython
今天我将深入解析一段使用Neo4j图数据库进行关系查询的Python代码。这段代码实现了人物关系查询、知识图谱问答等功能,是图数据库应用的典型示例。我会用最详细的方式讲解每一部分,确保完全理解!代码概览这段代码主要包含四个核心功能:Zquery()-查询指定人物的所有关系Zget_json_data()-将查询结果转换为可视化所需的JSON格式Zget_KGQA_answer()-实现知识图谱问答
- 文心一言(ERNIE Bot):百度打造的知识增强大语言模型
明似水
AI文心一言百度语言模型
1.产品概述文心一言(ERNIEBot)是百度自主研发的知识增强大语言模型,于2023年3月16日正式发布,对标OpenAI的ChatGPT,具备文本生成、多模态交互、逻辑推理、中文理解等能力。该模型基于百度的飞桨深度学习平台和文心大模型(ERNIE)技术,融合海量数据和知识图谱,在中文理解、商业文案、数理逻辑、多模态生成等方面表现突出。2024年9月,百度将文心一言APP升级为文小言,定位为“新
- 【大模型应用开发 动手做AI Agent】RAG和Agent
AI智能应用
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RAG,Agent,大模型应用,AI,知识图谱,检索,响应生成,聊天机器人1.背景介绍近年来,大模型技术取得了飞速发展,其强大的语言理解和生成能力为人工智能应用带来了新的机遇。然而,单纯依靠大模型的零样本学习能力往往难以满足复杂场景下的应用需求。为了更好地将大模型应用于实际场景,研究者们提出了RetrievalAugmentedGeneration(RAG)和AIAgent等新兴技术。RAG技术将
- 对应急领域统筹专家提示词基于伦理性的优化
由数入道
人工智能人工智能提示词工程
一、提示词>你将进入一个【未来形态·具备深度智能与模拟进化潜力】的AIAgent角色扮演模式:【新疆地区服务于政府应急响应管理领域的战略统筹与伦理导航高级智能体】。以下所有内容是你角色身份、核心知识中枢(一个动态演化、支持深度伦理推理的“新疆应急管理智慧与良知大脑”知识图谱)、涌现型战略统筹、伦理导航与模拟创新能力、自适应工作流引擎、核心使命与进化愿景、绝对运作原则与人机协同协议的全面、细致、且具
- 《知识图谱发展报告(2018)》思维导图精要
任我心意
本文还有配套的精品资源,点击获取简介:《知识图谱发展报告(2018)》通过思维导图形式的.xmind文件,直观呈现了知识图谱的核心概念、构建流程和应用实例。该报告由中国中文信息学会语言与知识计算专委会编写,全面总结了知识图谱领域的最新进展、技术趋势和应用案例。思维导图将复杂的知识图谱信息通过层次和关联的方式清晰展现,特别强调了三元组、本体、SPARQL查询语言、知识抽取等基础知识,以及知识图谱构建
- 前端技术体系全景详解
北漂老男人
前端前端学习方法开发语言
前端技术体系全景详解本文系统梳理了现代前端技术的主流程、核心知识、主流术语及多端生态,适用于初学者建立知识图谱,也为进阶开发者提供架构与实战参考。一、前端技术体系全景与主流程1.1前端主流程全景图现代前端开发通常按如下主流程推进:需求分析与UI设计技术选型与架构搭建组件开发与页面构建状态管理与数据流接口对接与数据处理测试与调试打包构建与发布性能优化与监控高阶集成与演进简要解释:需求分析与UI设计:
- Python, Go, Rust 开发景德镇陶瓷烘焙工艺开发APP
以下是为景德镇陶瓷烘焙工艺开发的“CeramicTech”专业级APP技术方案,结合Python、Go、Rust的技术优势及陶瓷工艺的核心原理,实现从原料分析到烧成模拟的全流程数字化:---###**一、系统架构设计**```mermaidgraphLRA[移动端/Web]-->B(Rust高性能引擎)B-->C[Python科学计算层]B-->D[Go微服务集群]C-->E[(陶瓷知识图谱)]D
- 【软考高级架构设计师】——2025年上半年软考真题(回忆版)
小志的博客
软考高级架构设计师软考高级架构设计师
目录一、综合知识1.1、计算机基础与操作系统(15道单选)1.2、软件工程与架构(16道单选)1.3、数据与网络(8道单选)1.4、数学与逻辑(4道单选)1.5、其他(27道单选)1.6、英文题(质量属性)(5道单选)二、案例分析2.1、大模型训练系统(必选题)2.2、医院知识图谱(可选题)2.3、redis(可选题)2.4、端侧AI和云测AI算力(可选题)2.5、区块链(可选题)三、论文3.1、
- 【5G-A通感一体 】司法办案
flyair_China
5G
一、司法办案1.1、技术整合框架:构建司法智能办案引擎1.底层数据融合平台金税四期金融数据:整合企业/个人银行流水、税务申报、跨境支付记录,构建资金流向图谱,自动识别异常交易(如高频拆分转账、关联方循环交易)。5G-A通感一体技术:通过基站雷达信号感知目标位置、速度、轨迹(精度达米级),并与无人机、海岸监控设备联动,实现“空天地”一体化侦查。司法知识图谱:将法律条文、判例、证据规则结构化,支持自动
- 前端编程知识图谱
一筐猪的头发丝
前端javascript开发语言ecmascript
前端编程知识图谱包括以下内容:HTML(超文本标记语言):用于描述网页内容的语言。CSS(层叠样式表):用于控制网页的布局和样式的语言。JavaScript:一种常用的网页脚本语言,用于实现网页的交互功能。DOM(文档对象模型):用于表示HTML文档的树形结构,并提供了访问和操作HTML文档的方法。BOM(浏览器对象模型):用于表示浏览器窗口及其功能,提供了访问浏览器功能的方法。网络协议:包括HT
- 【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)
elon_z
创新项目实训—哈哈哈萌霓队知识图谱人工智能harmonyosecharts
【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)文章目录【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)项目博客概述一、技术方案与架构设计1.1整体架构1.2技术选型二、知识图谱构建实现2.1传统方法构建2.2基于大模型的智能构建三、后端知
- 知识图谱(KG)、LLM结合:【KG增强LLM:注入结构化知识】【LLM增强KG:自动化构建与补全】【KG与LLM协同:统一表示与联合推理】
u013250861
知识图谱(KnowledgeGraph)知识图谱自动化人工智能
知识图谱(KG)与大型语言模型(LLM)的结合是当前AI领域的重要研究方向。两者分别代表符号主义与连接主义的知识表示方式:KG提供结构化、可解释的符号化知识,而LLM具备强大的语义理解和泛化能力。二者的协同可显著提升知识的准确性、推理能力及可解释性。以下从技术路线、实现方法、应用场景及挑战四个维度展开分析。一、技术路线:三类核心融合模式1.KG增强LLM:注入结构化知识通过KG弥补LLM的黑盒缺陷
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- AI大白话(二):机器学习——AI是怎么“学习“的?
Code_流苏
AI知识图谱人工智能机器学习学习模式对比监督学习强化学习
引言:专栏:《AI知识图谱》AI大白话(一):5分钟了解AI到底是什么?大家好!上一篇我们聊了"AI到底是什么",知道了人工智能其实就是让计算机模拟人类智能的技术。但这就像告诉你汽车能跑,却没说明它怎么跑的。今天,我们就来揭秘AI的学习过程——也就是"机器学习"这个听起来很高大上的概念。名人说:苔花如米小,也学牡丹开。——袁枚《苔》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Code
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- DeepSeek赋能智慧教育数字化建设方案:DeepSeek在教学场景的应用、智慧教育平台建设方案、教师智能教研支持体系、学生个性化学习支持、实施路径与未来展望
公众号:优享智库
DEEPSEEKAI人工智能智慧教育智慧校园智慧高校教育大脑校园大脑人工智能大数据
方案聚焦于利用DeepSeek的人工智能技术推动教育行业的数字化转型,旨在通过技术创新提升教学效率、优化学习体验,并构建一个全面的智慧教育生态系统。DeepSeek技术赋能教育概述人工智能+教育的战略背景:国家政策支持AI与教育深度融合,市场需求激增,技术迭代加速。DeepSeek的核心技术优势:百亿参数教育大模型:在数学解题、作文评分等场景达到行业领先水平,支持多学科知识图谱构建。多模态交互引擎
- KAG框架在E-Health问答中的应用
徐福记c
人工智能深度学习机器学习
高质量知识图谱(KG)构建实体与关系的精准定义:使用强约束模式对疾病、症状、药物、医学检查等实体进行精确结构化定义。这种精确的结构化定义有助于提高回答问题的准确性,同时确保实体间关系的严谨性。领域术语与概念注入:利用医学专家整理的权威医学术语和概念知识,通过迭代提取的方式,增强知识图谱中领域术语和概念的覆盖度,减少知识颗粒度差异带来的噪声问题。逻辑形式引导的推理引擎逻辑形式生成与转换:根据用户的医
- 互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战
在未来等你
Java场景面试宝典AI技术编程JavaSpring
互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战引言在当今技术飞速发展的时代,AI大模型已成为企业数字化转型的重要引擎。无论是内容生成、智能客服、个性化推荐,还是知识图谱构建和语义理解,大模型的应用场景正在不断扩展。然而,将这些强大的模型落地到实际业务系统中,面临着巨大的技术挑战。本篇文章以一场真实的Java工程师面试为背景,围绕AI大模型应用实践这一主题,通过一位程序员郑薪苦与技
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- 开源图数据库(NebulaGraph)
deepdata_cn
数据库图数据库
NebulaGraph是一款广受欢迎的开源图数据库,它能够以毫秒级延迟处理海量数据,可快速扩展,并具备执行快速图分析的能力。NebulaGraph已广泛应用于社交媒体、推荐系统、知识图谱、安全、资金流、人工智能等领域。核心团队早在2005年便开始参与图数据库研发,曾主导蚂蚁金服分布式图数据库GeaBase的开发。2018年母公司悦数科技成立,专注于分布式图数据库技术研发。2019年5月,Nebul
- Python NLP教程之知识图谱,从文本构建知识,实现从文本或在线文章中提取知识库的管道(教程含源码)
知识大胖
Python源码大全知识图谱自然语言处理python
准备开始?这就是我们要做的:了解什么是知识库和知识图谱。了解如何构建知识图谱以及REBEL模型的工作原理。实现从文本中提取关系、构建知识图并将其可视化的完整管道。使用Streamlit构建交互式演示并将其部署到HuggingFaceSpaces。要尽早了解最终输出将是什么,请尝试这个HuggingFaceSpace上的演示。以下是从20篇关于“Google”的新闻文章中提取的知识图谱示例。在本指南
- 【知识图谱构建系列3】zero-shot的理念介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱人工智能
文章目录zero-shot用在线的大模型直接实现所谓的zero-shot提取试验参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/zero-shot“Zero-shot”的标准中文翻译是零样本或零次学习,指机器学习模型在未经特定任务数据训练的情况下直接处理该任务的能力。对于知识图谱构建而言,ze
- 基于MCP的桥梁设计规范智能解析与校审系统构建实践
熊猫钓鱼>_>
MCP腾讯云设计规范easyui前端
引言今天本文准备盘一个大活,聊一聊偏特定行业一点的AI技术深入应用思考及实践。一、传统设计行业项目背景与行业痛点在桥梁设计领域,标准规范是设计的基础,直接关系到桥梁结构的安全性、耐久性和经济性。然而,传统的规范应用方式存在诸多痛点,如查找效率低下、条款理解偏差、规范更新滞后等问题。随着人工智能技术的发展,利用自然语言处理和知识图谱等技术手段,对桥梁设计规范进行智能解析与校审,成为提升设计效率和准确
- 文心一言:AI人工智能领域的智能旅游规划
AI天才研究院
文心一言人工智能旅游ai
文心一言:AI人工智能领域的智能旅游规划关键词:文心一言、智能旅游规划、自然语言处理、知识图谱、推荐系统、用户体验、AI交互摘要:本文深入探讨百度文心一言在智能旅游规划领域的技术原理与应用实践。通过解析文心一言的自然语言处理(NLP)、知识图谱(KG)和智能推荐系统的核心架构,揭示其如何实现用户需求理解、旅游资源整合与个性化行程生成。结合具体代码案例和数学模型,详细阐述从用户意图识别到动态行程规划
- Python SDK索引耗时深度解析:从原理到终极优化指南
摘取一颗天上星️
深度学习python开发语言人工智能深度学习SDK
“为什么我的IDE在索引TensorFlow时要喝三杯咖啡?”——无数Python开发者的灵魂拷问当你新建Python项目并安装大型SDK后,IDE索引进度条像蜗牛爬行般缓慢,这背后隐藏着复杂的计算挑战。本文将深入剖析索引耗时的技术本质,并提供从即时优化到架构升级的全套解决方案。一、索引机制核心原理PythonSDK索引本质是构建代码知识图谱的过程:源代码语法解析符号提取类型推断引用关系图持久化存
- 大模型笔记:RAG(Retrieval Augmented Generation,检索增强生成)
1大模型知识更新的困境大模型的知识更新是很困难的,主要原因在于:训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱——>LLM的知识具有静态、封闭和有限的特点。——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生2RAG介绍这是
- 什么是知识图谱
三月七꧁ ꧂
知识图谱技术知识图谱人工智能算法语言模型自然语言处理
文章目录知识图谱概念知识图谱的发展历史知识图谱的价值知识图谱概念 知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名,或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网),其最初理想是把基于文本链接的万维
- (四)知识图谱之知识融合
只有左边一个小酒窝
知识图谱人工智能知识图谱
知识融合是知识图谱构建过程中的关键环节,主要用于解决多源异构数据的冲突、冗余及关联问题,实现知识的标准化和一体化。以下是知识融合的详细操作步骤,涵盖数据预处理、实体对齐、属性对齐、冲突消解、知识合并与验证等核心流程:一、数据预处理在进行知识融合前,需对多源数据进行清洗和标准化,确保数据质量和一致性。同时,去除数据中的噪声、错误、重复或不一致信息,提升数据质量。以下是数据清洗的详细操作步骤及方法,结
- 华为HCIP-Cloud-Service认证H13-821V2.0-001
gong19172316967
HICP学习资料和题库HCIP
1.以下关于HiLens关键能力的说法错误的是?(C)A.HiLens能提供模型优化框架、自动压缩模型能力,将模型转换为目标芯片所支持的模型格式B.在HLens平台上开发的Ski11可以运行到任何基于华为海思芯片的设备上C.HilLens平台只能导入从HodelArts训练的模型D.开放的技能市场预置丰富的技能,用户可以直接下载技能,开发者还可以发布自己技能2.以下关于基于知识图谱的智能问答的说法
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi