小结:分布式系统全局唯一Id生产策略

1.ID生成系统的需求

1.全局唯一性:不能出现重复的ID,最基本的要求;
2.趋势递增:MySQL InnoDB引擎使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应尽量使用有序的主键保证写入性能;
3.单调递增:保证下一个ID一定大于上一个ID;
4.信息安全:如果ID是连续递增的,恶意用户就可以很容易的窥见订单号的规则,从而猜出下一个订单号,如果是竞争对手,就可以直接知道我们一天的订单量。所以在某些场景下,需要ID无规则;

第3、4两个需求是互斥的,无法同时满足

其他要求:

同时,在大型分布式网站架构中,除了需要满足ID生成自身的需求外,还需要ID生成系统可用性极高。想象以下,如果ID生成系统瘫痪,那么整个业务无法进行下去,那将是一次灾难。因此,总结ID生成系统还需要满足如下的需求:
1.高可用,可用性达到5个9或4个9;
2.高QPS,性能不能太差,否则容易造成线程堵塞;
3.平均延迟和TP999(保证99.9%的请求都能成功的最低延迟)延迟都要尽可能低;

2.分布式系统唯一ID生成策略

2.1 数据库自增长序列或字段

1. 数据库自增长序列或字段
最常见的方式。利用数据库,全数据库唯一。

优点:

1)简单,代码方便,性能可以接受。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。

2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。

3)在性能达不到要求的情况下,比较难于扩展。

4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。

5)分表分库的时候会有麻烦。

优化方案:

1)针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

2.2 基于redis的分布式ID生成器

当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。

这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。

1. 可以用Redis的原子操作 INCR和INCRBY来实现

Redis Incr 命令将 key 中储存的数字值增一,如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。

Redis Incrby 命令将 key 中储存的数字加上指定的增量值,如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。

2. 可以利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID

Redis从2.6版本开始引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务端原子的执行多个Redis命令。

源码:https://github.com/hengyunabc/redis-id-generator

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

A:1,6,11,16,21

B:2,7,12,17,22

C:3,8,13,18,23

D:4,9,14,19,24

E:5,10,15,20,25

这个,随便负载到哪个机确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以方式单点故障的问题。

另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。

2)需要编码和配置的工作量比较大

 

2.3 Twitter:SnowFlake雪花算法

Twitter的雪花算法实现(Java)

 

2.4 百度开源分布式Id生成器uid-generator

源码:https://github.com/baidu/uid-generator

 

2.5 Leaf:美团分布式ID生成服务开源

源码:https://github.com/Meituan-Dianping/Leaf


参考:

https://www.douban.com/note/640717225/           

https://blog.csdn.net/u014401141/article/details/84564681

你可能感兴趣的:(日常总结)