- TensorFlow深度学习实战——DCGAN详解与实现
盼小辉丶
深度学习tensorflow生成对抗网络
TensorFlow深度学习实战——DCGAN详解与实现0.前言1.DCGAN架构2.构建DCGAN生成手写数字图像2.1生成器与判别器架构2.2构建DCGAN相关链接0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetwork,DCGAN)是一种基于生成对抗网络(GenerativeAdversarialNetwork,GAN)的深度学
- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- TensorFlow深度学习实战——Transformer变体模型
盼小辉丶
深度学习tensorflowtransformer
TensorFlow深度学习实战——Transformer变体模型0.前言1.BERT2.GPT-23.GPT-34.Reformer5.BigBird6.Transformer-XL7.XLNet8.RoBERTa9.ALBERT10.StructBERT11.T5和MUM12.ELECTRA13.DeBERTa14.进化Transformer和MEENA15.LaMDA16.SwitchTra
- 深度学习实战111-基于神经网络的A股、美股、黄金对冲投资策略(PyTorch LSTM)
微学AI
深度学习实战(进阶)深度学习神经网络pytorch
文章目录一、A股与美股对冲互补投资方案1.现象与逻辑2.对冲互补投资思路3.资金分配样例4.最大化收益的关键二、对冲互补投资思路1.资金分配原则2.动态调整机制3.对冲操作三、投资方案样例1.初始资金分配(假设总资金10万元)2.动态调整举例情景一:美股进入牛市,A股震荡情景二:A股进入牛市,美股高位震荡情景三:全球风险事件,市场大跌四、操作细节与注意事项五、样例操作流程六、基于神经网络的A股美股
- 【深度学习实战】图像二分类任务的精度优先模型推荐
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型图像分类模型EfficientNetTransformerConvNeXt
图像二分类任务的精度优先模型推荐推荐3种在精度方面表现突出的图像分类模型架构。这些模型在PyTorch中有良好支持,可通过微调预训练模型或从头训练来应用。每种模型的介绍、微调/从头训练建议、精度表现和对趋势图类图像的适用性分析如下。1.SwinTransformer(视觉Transformer架构)简介:SwinTransformer是一种由Microsoft提出的VisionTransforme
- TensorFlow深度学习实战(18)——K-means 聚类详解
盼小辉丶
深度学习tensorflowkmeans
TensorFlow深度学习实战(18)——K-means聚类详解0.前言1.K-means聚类2.实现K-means聚类2.1算法实现2.2肘部法则3.K-means算法变体小结系列链接0.前言K-means聚类是一种常用的无监督学习算法,用于将数据集划分为若干个互不重叠的簇(cluster),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。在本节中,将介绍K-means聚类的基
- TensorFlow深度学习实战(17)——主成分分析详解
盼小辉丶
深度学习tensorflow人工智能
TensorFlow深度学习实战(17)——主成分分析详解0.前言1.主成分分析2.使用TensorFlow实现PCA3.TensorFlow嵌入API小结系列链接0.前言主成分分析(PrincipalComponentAnalysis,PCA)是一种强大的降维工具,通过找到数据的主成分,可以有效地减少数据的复杂性,去除冗余特征,并保留数据的主要信息,在数据预处理、特征提取和可视化等方面都有广泛的
- 深度学习实战108-基于通义千问Qwen2.5-Omni的智能数字人实时对话系统实现
微学AI
深度学习实战(进阶)大模型的实践应用深度学习人工智能QwenLLMOmni
大家好,我是微学AI,今天给大家介绍一下深度学习实战108-基于通义千问Qwen2.5-Omni的智能数字人实时对话系统实现。通义千问Qwen2.5-Omni作为全球首个端到端全模态大模型,实现了多模态输入与实时输出的完美结合,为构建智能数字人实时对话系统提供了强大技术支持。本报告将详细阐述基于该模型的智能数字人对话系统开发流程,包括项目背景、技术架构、实现代码及测试优化策略,帮助开发者快速构建具
- 深度学习实战 04:卷积神经网络之 VGG16 复现三(训练)
生信探索
深度学习cnn人工智能
在后续的系列文章中,我们将逐步深入探讨VGG16相关的核心内容,具体涵盖以下几个方面:卷积原理篇:详细剖析VGG的“堆叠小卷积核”设计理念,深入解读为何3×3×2卷积操作等效于5×5卷积,以及3×3×3卷积操作等效于7×7卷积。架构设计篇:运用PyTorch精确定义VGG16类,深入解析“Conv-BN-ReLU-Pooling”这一标准模块的构建原理与实现方式。3.训练实战篇:在小规模医学影像数
- PyTorch深度学习实战(18)—— 可视化工具
shangjg3
人工智能深度学习pytorch人工智能神经网络
在训练神经网络时,通常希望能够更加直观地了解训练情况,例如损失函数曲线、输入图片、输出图片等信息。这些信息可以帮助读者更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的办法就是打印输出,这种方式只能打印数值信息,不够直观,同时无法查看分布、图片、声音等。本节介绍两个深度学习中常用的可视化工具:TensorBoard和Visdom。1.TensorBoard最初,TensorBoard是
- 基于YOLOv8深度学习的人脸面部口罩检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
zhangjiaofa
YOLO深度学习python面部口罩检测
基本功能演示在这里插入图片描述摘要:人脸口罩面部检测能够准确地检测人脸是否佩戴口罩,对于控制疫情传播、保障公共卫生安全起到关键作用。本文基于YOLOv8深度学习框架,通过853张图片,训练了一个进行人脸面部口罩的目标检测模型,能够准确的检测人脸“戴口罩”、“未戴口罩”及“未正确佩戴口罩”。并基于此模型开发了一款带UI界面的人脸面部口罩检测系统,可用于实时检测场景中的人员是否佩戴口罩,更方便进行功能
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- TensorFlow深度学习实战(13)——神经嵌入详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(13)——神经嵌入详解0.前言1.神经嵌入简介1.1Item2Vec1.2node2vec2.数据集与模型分析3.实现神经嵌入小结系列链接0.前言神经嵌入(NeuralEmbedding)是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入(Embedding)技术范畴,在深度学习中起着关键作用。神经嵌入通过
- TensorFlow深度学习实战(10)——迁移学习详解
盼小辉丶
深度学习tensorflow迁移学习
TensorFlow深度学习实战(10)——迁移学习详解0.前言1.迁移学习1.1迁移学习基本概念1.2迁移学习的重要性1.3ImageNet1.4迁移学习流程2.InceptionV3架构3.构建迁移学习模型小结系列链接0.前言迁移学习(TransferLearning)是一种利用从一项任务中获得的知识来解决另一项类似任务的技术。一个使用数百万张图像训练的模型,训练数据涵盖数千种对象类别,模型的
- 【人工智能核心技术全景解读】从机器学习到深度学习实战
满怀1015
人工智能人工智能机器学习深度学习pythontensorflow
目录前言️技术背景与价值当前技术痛点️解决方案概述目标读者说明一、技术原理剖析核心概念图解核心作用讲解关键技术模块说明⚖️技术选型对比二、实战演示️环境配置要求️核心代码实现案例1:图像分类(CNN)案例2:文本情感分析(Transformer)运行结果验证⚡三、性能对比测试方法论量化数据对比结果分析四、最佳实践✅推荐方案❌常见错误调试技巧五、应用场景扩展适用领域创新应用方向生态工具链✨结语⚠️技
- PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
进取星辰
PyTorch深度学习实战深度学习pytorch人工智能
之前的PyTorch深度学习实战(23):多任务强化学习(Multi-TaskRL)总结扩展运用代码如下:importtorchimporttorch.nnasnnimporttorch.optimasoptimimportnumpyasnpfromtorch.distributionsimportNormalfromtorch.ampimportautocast,GradScalerfromme
- 大模型入门必读的9本硬核好书:豆瓣评分超9.0,值得反复研读!非常详细收藏这一篇就够!
大模型入门教程
AI大模型人工智能程序员产品经理学习大模型书籍大模型入门
模型大师们,准备好踏上一段深度学习与模型构建的路了吗?这里有八本经典之作,它们将是你攀登知识高峰的阶梯从《PyTorch深度学习实战》到《大模型时代》从掌握基础框架到洞悉大模型时代的变革模型大师,准备好了吗?翻烂这八本书,直接嘎嘎冲!第一本:《从零开始大模型开发与微调》《从零开始大模型开发与微调》是一本由王晓华所著,清华大学出版社出版的书籍。本书系统介绍了基于PyTorch2.0和ChatGLM的
- PyTorch深度学习实战(1)——PyTorch安装与配置
shangjg3
PyTorch深度学习实战深度学习pytorch机器学习人工智能
本章共有两节,2.1节介绍如何安装PyTorch,以及如何配置学习环境;2.2节带领读者快速浏览PyTorch中的主要内容,帮助读者初步了解PyTorch。PyTorch是一款以C语言为主导开发的轻量级深度学习框架,它提供了丰富的Python接口以便用户使用。在使用PyTorch之前,读者需要安装Python环境以及pip包管理工具,笔者推荐使用Anaconda配置相关虚拟环境。本书中的所有代码均
- 深度学习实战之手写数字识别
不吃香菜?
深度学习人工智能
一、简介在深度学习的世界里,手写数字识别是一个经典且入门级的任务,它就像是深度学习领域的“Hello,World!”,通过完成这个任务,我们能够快速掌握深度学习模型的搭建、训练与测试流程。本文将基于PyTorch框架,手把手教你实现一个手写数字识别模型。二、具体代码实现1、pytorch基础库导入importtorchprint(torch.__version__)#该行代码用来检查pytorch
- PyTorch深度学习实战(24)—— 爱因斯坦操作einsum 和 einops
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能神经网络
在高级索引中还有一类特殊方法:爱因斯坦操作。下面介绍两种常用的爱因斯坦操作:einsum和einops,它们被广泛地用于向量、矩阵和张量的运算。灵活运用爱因斯坦操作可以用非常简单的方式表示较为复杂的多维Tensor之间的运算。1.einsum在数学界中,有一个由爱因斯坦提出来的求和约定,该约定能够有效处理坐标方程。爱因斯坦求和(einsum)就是基于这个法则,省略求和符号和默认成对出现的下标,从而
- PyTorch 深度学习实战(38):注意力机制全面解析(从Seq2Seq到Transformer)
进取星辰
PyTorch深度学习实战深度学习pytorchtransformer
在上一篇文章中,我们探讨了分布式训练实战。本文将深入解析注意力机制的完整发展历程,从最初的Seq2Seq模型到革命性的Transformer架构。我们将使用PyTorch实现2个关键阶段的注意力机制变体,并在机器翻译任务上进行对比实验。一、注意力机制演进路线1.关键模型对比模型发表年份核心创新计算复杂度典型应用Seq2Seq2014编码器-解码器架构O(n²)机器翻译BahdanauAttenti
- Python 深度学习实战 第10章 使用深度学习处理时间序列&RNN预测实例
odoo中国
人工智能深度学习pythonrnn时间序列
Python深度学习实战第10章使用深度学习处理时间序列数据&RNN实例内容概要第10章深入探讨了时间序列数据的深度学习应用,涵盖了从预测到分类、事件检测和异常检测等多种任务。本章通过温度预测示例,详细介绍了如何使用循环神经网络(RNN)及其变体(如LSTM和GRU)来处理时间序列数据。通过本章,读者将掌握如何使用深度学习解决时间序列问题,并理解RNN的工作原理。主要内容时间序列任务的类型预测:预
- TensorFlow深度学习实战(11)——风格迁移详解
盼小辉丶
深度学习tensorflow人工智能
TensorFLow深度学习实战(11)——风格迁移详解0.前言1.风格迁移原理1.1内容损失1.2风格损失2.模型分析3.使用TensorFlow实现神经风格迁移小结系列链接0.前言风格迁移是用于训练神经网络创作艺术作品的深度学习技术,同时也是一种有趣的神经网络应用,提供了一种用于深入理解神经网络的方式。在本节中,我们将学习神经风格迁移算法。在神经风格迁移中,我们需要一个内容图像和一个风格图像,
- TensorFlow深度学习实战(12)——词嵌入技术详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(12)——词嵌入技术详解0.前言1.词嵌入基础2.分布式表示3.静态嵌入3.1Word2Vec3.2GloVe4.使用Gensim构建词嵌入5.使用Gensim探索嵌入空间6.动态嵌入小结系列链接0.前言在本节中,我们首先介绍词嵌入的概念,然后介绍两种实现词嵌入的方式:Word2Vec和GloVe,学习如何使用Gensim库从零开始构建语料库的词嵌入,并探索所创建
- TensorFlow深度学习实战(7)——分类任务详解
盼小辉丶
深度学习tensorflow分类
TensorFlow深度学习实战(7)——分类任务详解0.前言1.分类任务1.1分类任务简介1.2分类与回归的区别2.逻辑回归3.使用TensorFlow实现逻辑回归小结系列链接0.前言分类任务(ClassificationTask)是机器学习中的一种监督学习问题,其目的是将输入数据(特征向量)映射到离散的类别标签。广泛应用于如文本分类、图像识别、垃圾邮件检测、医学诊断等多种领域。1.分类任务1.
- PyTorch深度学习实战(45)——强化学习
盼小辉丶
深度学习pytorch强化学习
PyTorch深度学习实战(45)——强化学习0.前言1.强化学习基础1.1基本概念1.2马尔科夫决策过程1.3目标函数1.4智能体学习过程2.计算状态值3.计算状态-动作值4.Q学习4.1Q值4.2Gym环境4.3构建Q表4.4探索-利用策略小结系列链接0.前言强化学习是当前人工智能领域的研究热点问题,强化学习主要通过考察智能体与环境的相互作用,得到策略模型、优化策略并最大化累积回报的过程。强化
- TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入0.前言1.字符嵌入2.字词嵌入3.句子嵌入和段落嵌入相关链接0.前言在自然语言处理中,嵌入(Embedding)技术是将文本转化为数值向量的核心方法,使计算机能够理解和处理语言中的语义信息。根据文本处理的粒度不同,除了词嵌入外,还包括字符嵌入、子词嵌入、句子嵌入和段落嵌入。这些嵌入技术使得计算机能够以不同的粒度理解和处理文
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持