子集和问题(动态规划)

判断数组中是否存在子集,使得子集之和等于指定数target:(动态规划)


//动态规划方法一
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        while (in.hasNext()) {
            int n = in.nextInt();
            int targetSum = in.nextInt();
            int[] values = new int[n];
            for (int i = 0; i < n; i++) {
                values[i] = in.nextInt();
            }
            boolean[] dp = new boolean[targetSum + 1];
            dp[0] = true;
            for (int v : values) {
                for (int i = targetSum; i >= v; i--) {
                    dp[i] = dp[i] || dp[i - v];
                }
            }
            System.out.println(dp[targetSum] ? "perfect" : "good");
        }
    }
}


//动态规划方法二
  //建立布尔矩阵
  //太棒了!http://comproguide.blogspot.jp/2013/10/subset-sum-problem.html
    public static boolean hasSum(int[] array, int sum) {
        int len = array.length;
        boolean[][] table = new boolean[sum + 1][len + 1];

        int i;

        //If sum is zero; empty subset always has a sum 0; hence true
        for (i = 0; i <= len; i++)
            table[0][i] = true;

        //If set is empty; no way to find the subset with non zero sum; hence false
        for (i = 1; i <= sum; i++)
            table[i][0] = false;

        //calculate the table entries in terms of previous values
        for (i = 1; i <= sum; i++) {
            for (int j = 1; j <= len; j++) {
                table[i][j] = table[i][j - 1];//等于前一个元素。即前一个数代表:If there exists a subset of array[0..j-2] with the sum i(true of matrix[i][j-1]); then there should be a subset of array[0..j-1]also with the sum i.

                if (!table[i][j] && i >= array[j - 1])//如果为false且所处的行大于数组中给定位置的数字。
                    table[i][j] = table[i - array[j - 1]][j - 1];
            }
        }

        return table[sum][len];
    }

你可能感兴趣的:(java,daily_code)