tensorflow中的seq2seq的代码详解

seq2seq模型详解中我们给出了seq2seq模型的介绍,这篇文章介绍tensorflow中seq
2seq的代码,方便日后工作中的调用。本文介绍的代码是版本1.2.1的代码,在1.0版本后,tensorflow要重新给出一套seq2seq的接口,把0.x的seq2seq搬到了legacy_seq2seq下,今天读的就是legacy_seq2seq的代码。目前很多代码还是使用了老的seq2seq接口,因此仍有熟悉的必要。整个seq2seq.py的代码结构如下图所示:

tensorflow中的seq2seq的代码详解_第1张图片

接下来,将按照seq2seq的调用顺序依次介绍model_with_buckets、embedding_rnn_seq2seq、embedding_rnn_decoder、_extract_argmax_and_embed、sequence_loss、sequence_loss_by_example等函数。其他函数如basic_rnn_seq2seq、tied_rnn_seq2seq、embedding_attention_seq2seq的流程和embedding_rnn_seq2seq类似,将在最后做简要分析。

model_with_buckets

def model_with_buckets(encoder_inputs,
                       decoder_inputs,
                       targets,
                       weights,
                       buckets,
                       seq2seq,
                       softmax_loss_function=None,
                       per_example_loss=False,
                       name=None):

  if len(encoder_inputs) < buckets[-1][0]:
    raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
                     "st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
  if len(targets) < buckets[-1][1]:
    raise ValueError("Length of targets (%d) must be at least that of last"
                     "bucket (%d)." % (len(targets), buckets[-1][1]))
  if len(weights) < buckets[-1][1]:
    raise ValueError("Length of weights (%d) must be at least that of last"
                     "bucket (%d)." % (len(weights), buckets[-1][1]))

  all_inputs = encoder_inputs + decoder_inputs + targets + weights
  losses = []
  outputs = []
  with ops.name_scope(name, "model_with_buckets", all_inputs):
    for j, bucket in enumerate(buckets):
      with variable_scope.variable_scope(
          variable_scope.get_variable_scope(), reuse=True if j > 0 else None):
        bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]],
                                    decoder_inputs[:bucket[1]])
        outputs.append(bucket_outputs)
        if per_example_loss:
          losses.append(
              sequence_loss_by_example(
                  outputs[-1],
                  targets[:bucket[1]],
                  weights[:bucket[1]],
                  softmax_loss_function=softmax_loss_function))
        else:
          losses.append(
              sequence_loss(
                  outputs[-1],
                  targets[:bucket[1]],
                  weights[:bucket[1]],
                  softmax_loss_function=softmax_loss_function))

  return outputs, losses

输入参数:

encoder_inputs:这里的inputs是ids的形式还是传入input_size的形式,要根据后面seq2seq定义的那个函数决定,一般就只传入两个参数x, y分别对应encoder_inputs和decoder_inputs(另外特定seq2seq需要的参数需要在自定义的这个seq2seq函数内部传入)。这个时候,如果我们使用的是embedding_seq2seq,那么实际的inputs就应该是ids的样子;否则,就是input_size的样子。

targets:a list因为每一时刻都会有target,并且每一时刻输入的是batch_size个,因此每一时刻的target是[batch_size,]的形式,最终导致targets是a list of [batch_size, ]

buckets:a list of (input_size, output_size)

per_example_loss:默认是False,表示losses是[batch_size, ]。接下来会讲到的sequence_loss_by_example的结果是[batch_size,],而sequence_loss的结果是一个scalar。

实现:

根据中间for循环可以看到,对每一个bucket都实现了一个seq2seq的model。如果设置了3个buckets=[(5, 10), (10, 15), (15, 20)],第1个bucket是(5,10),那么数据集中encoder_input < 5并且 decoder_input < 10的数据会被padding,并且进行seq2seq,得到输出是a list of [batch_size, output_size],然后将这个输出加入到outputs中。

最终得到的outputs就是一个bucket_size长度(这里为3)的列表,列表中每个元素是长度不等的list(之所以长度不等是因为每个bucket所定义的max_decoder_length不等,依次增大)。这里定义了可以使用bucket的seq2seq,接下来我们看seq2seq是如何实现的。

embedding_rnn_seq2seq

def embedding_rnn_seq2seq(encoder_inputs,
                          decoder_inputs,
                          cell,
                          num_encoder_symbols,
                          num_decoder_symbols,
                          embedding_size,
                          output_projection=None,
                          feed_previous=False,
                          dtype=None,
                          scope=None):
  with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq") as scope:
    if dtype is not None:
      scope.set_dtype(dtype)
    else:
      dtype = scope.dtype

    # Encoder.
    encoder_cell = copy.deepcopy(cell)
    encoder_cell = core_rnn_cell.EmbeddingWrapper(
        encoder_cell,
        embedding_classes=num_encoder_symbols,
        embedding_size=embedding_size)
    _, encoder_state = rnn.static_rnn(encoder_cell, encoder_inputs, dtype=dtype)

    # Decoder.
    if output_projection is None:
      cell = core_rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)

    if isinstance(feed_previous, bool):
      return embedding_rnn_decoder(
          decoder_inputs,
          encoder_state,
          cell,
          num_decoder_symbols,
          embedding_size,
          output_projection=output_projection,
          feed_previous=feed_previous)

    # If feed_previous is a Tensor, we construct 2 graphs and use cond.
    def decoder(feed_previous_bool):
      reuse = None if feed_previous_bool else True
      with variable_scope.variable_scope(
          variable_scope.get_variable_scope(), reuse=reuse):
        outputs, state = embedding_rnn_decoder(
            decoder_inputs,
            encoder_state,
            cell,
            num_decoder_symbols,
            embedding_size,
            output_projection=output_projection,
            feed_previous=feed_previous_bool,
            update_embedding_for_previous=False)
        state_list = [state]
        if nest.is_sequence(state):
          state_list = nest.flatten(state)
        return outputs + state_list

    outputs_and_state = control_flow_ops.cond(feed_previous,
                                              lambda: decoder(True),
                                              lambda: decoder(False))
    outputs_len = len(decoder_inputs)  # Outputs length same as decoder inputs.
    state_list = outputs_and_state[outputs_len:]
    state = state_list[0]
    if nest.is_sequence(encoder_state):
      state = nest.pack_sequence_as(
          structure=encoder_state, flat_sequence=state_list)
    return outputs_and_state[:outputs_len], state

参数:

inputs:既然embedding是内部帮我们完成,则inputs shape= a list of [batch_size],每个时间步长都是batch_size个token id。内部使用一个core_rnn_cell.Embedding_wrapper()函数,lookup向量表(vocab_size*embedding_size),生成a list of [batch_size, embedding_size]的tensor。

num_encoder_symbols:通俗的说其实就是encoder端的vocab_size。enc和dec两端词汇量不同主要在于不同语言的translate task中,如果单纯是中文到中文的生成,不存在两端词汇量的不同。

num_decoder_symbols:同上。

embedding_size:每个vocab需要用多少维的vector表示。

output_projection=None:这是一个非常重要的变量。如果output_projection为默认的None,此时为训练模式,这是的cell加了一层OutputProjectionWrapper,即将输出的[batch_size, output_size]转化为[batch_size,symbol]。而如果output_projection不为空,此时的cell的输出还是[batch_size, output_size]。两个cell是不同的,这就直接影响到后续的embedding_rnn_decoder的解码过程和loop_function的定义操作。

feed_previous=False:如果feed_previous只是简单的一个True or False,则直接返回embedding_rnn_decoder的结果。重点是feed_previous还能传入一个boolean tensor,暂时无此需求。

实现:

可以看出,将token的id转化为向量以后,使用static_rnn函数得到encoder的编码向量,即encoder的最后一个时间步长的隐含状态ht。其中static_rnn是实现比较早的rnn代码,时间步长是固定的;而dynamic_rnn可以实现动态的时间步长,使用更加方便。有关dynamic_rnn可以移步我的博客我的博客。

得到ht以后,直接调用embedding_rnn_decoder函数,所以接下来我们分析这个函数。

embedding_rnn_decoder

def embedding_rnn_decoder(decoder_inputs,
                          initial_state,
                          cell,
                          num_symbols,
                          embedding_size,
                          output_projection=None,
                          feed_previous=False,
                          update_embedding_for_previous=True,
                          scope=None):

  with variable_scope.variable_scope(scope or "embedding_rnn_decoder") as scope:
    if output_projection is not None:
      dtype = scope.dtype
      proj_weights = ops.convert_to_tensor(output_projection[0], dtype=dtype)
      proj_weights.get_shape().assert_is_compatible_with([None, num_symbols])
      proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
      proj_biases.get_shape().assert_is_compatible_with([num_symbols])

    embedding = variable_scope.get_variable("embedding",
                                            [num_symbols, embedding_size])
    loop_function = _extract_argmax_and_embed(
        embedding, output_projection,
        update_embedding_for_previous) if feed_previous else None
    emb_inp = (embedding_ops.embedding_lookup(embedding, i)
               for i in decoder_inputs)
    return rnn_decoder(
        emb_inp, initial_state, cell, loop_function=loop_function)

输入参数:

decoder_inputs:这里input是token id,shape为a list of [batch_size, ]也就是说,输入不需要自己做embedding,直接输入tokens在vocab中对应的idx(即ids)即可,内部会自动帮我们进行id到embedding的转化。

num_symbols:就是vocab_size

embedding_size:每个token需要embedding成的维数。

output_projection:如果output_projection为默认的None,此时为训练模式,这时的cell加了一层OutputProjectionWrapper,即将输出的[batch_size, output_size]转化为[batch_size,nums_symbol]。而如果output_projection不为空,此时的cell的输出还是[batch_size, output_size]。

update_embedding_for_previous:如果前一时刻的output不作为当前的input的话(feed_previous=False),这个参数没影响();否则,该参数默认是True,但如果设置成false,则表示不对前一个embedding进行更新,那么bp的时候只会更新”GO”的embedding,其他token(decoder生成的)embedding不变。

输出:

outputs:如果output_projection=None的话,也就是不进行映射(此时的cell直接输出的是num_symbols的个数),那么a list of [batch_size, num_symbols];如果不为None(此时的cell直接输出的是[batch_size, output_size]的大小),说明outputs要进行映射,则outputs是a list of [batch_size, output_size]。
state同上。

rnn_decoder

def rnn_decoder(decoder_inputs,
                initial_state,
                cell,
                loop_function=None,
                scope=None):

  with variable_scope.variable_scope(scope or "rnn_decoder"):
    state = initial_state
    outputs = []
    prev = None
    for i, inp in enumerate(decoder_inputs):
      if loop_function is not None and prev is not None:
        with variable_scope.variable_scope("loop_function", reuse=True):
          inp = loop_function(prev, i)
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      output, state = cell(inp, state)
      outputs.append(output)
      if loop_function is not None:
        prev = output
  return outputs, state

参数:

decoder_inputs:是a list,其中的每一个元素表示的是t_i时刻的输入,每一时刻的输入又会有batch_size个,每一个输入(通差是表示一个word或token)又是input_size维度的。

initial_state:初始状态,通常是encoder的ht。

cell:如果output_projection为默认的None,此时为训练模式,这时的cell加了一层OutputProjectionWrapper,即将输出的[batch_size, output_size]转化为[batch_size,symbol]。而如果output_projection不为空,此时的cell的输出还是[batch_size, output_size]。

loop_function: 如果loop_function有设置的话,decoder input中第一个”GO”会输入,但之后时刻的input就会被忽略,取代的是input_ti+1 = loop_function(output_ti)。这里定义的loop_function,有2个参数,(prev,i),输出为next

实现:

这个函数就是seq2seq的核心代码。

训练时,loop_function为none,output_projection为none,此时的dec_input按照时间步长对齐,输入到decoder,得到的每个cell的输出,shape为[batch_size,symbol_nums]。如下图:

tensorflow中的seq2seq的代码详解_第2张图片

预测时,loop_function不为none,output_projection不为none。此时,仅读取decoder的第一个时间步长的。其他时间步长的输入都采用上一个时间步长的输出。在介绍embedding_rnn_decoder时候说道,当output_projection不为none时,cell的输出为[batch_size, output_size],因此loop_function的作用就是将[batch_size, output_size]变为[batch_size, symbol_nums],然后取出概率最大的符号,并进行embedding,作为下一个时间步长的输入。如下图所示:

tensorflow中的seq2seq的代码详解_第3张图片

def loop_function(prev, _):
    if output_projection is not None:
      prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])
    prev_symbol = math_ops.argmax(prev, 1)
    # Note that gradients will not propagate through the second parameter of
    # embedding_lookup.
    emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
    if not update_embedding:
      emb_prev = array_ops.stop_gradient(emb_prev)
    return emb_prev

输出:
outputs:如果output_projection为默认的None,此时为训练模式,这时的cell加了一层OutputProjectionWrapper,即将输出的[batch_size, output_size]转化为[batch_size,symbol_nums]。而如果output_projection不为空,此时的cell的输出还是[batch_size, output_size]。

state:最后一个时刻t的cell state,shape=[batch_size, cell.state_size]

sequence_loss

def sequence_loss(logits,
                  targets,
                  weights,
                  average_across_timesteps=True,
                  average_across_batch=True,
                  softmax_loss_function=None,
                  name=None):

  with ops.name_scope(name, "sequence_loss", logits + targets + weights):
    cost = math_ops.reduce_sum(
        sequence_loss_by_example(
            logits,
            targets,
            weights,
            average_across_timesteps=average_across_timesteps,
            softmax_loss_function=softmax_loss_function))
    if average_across_batch:
      batch_size = array_ops.shape(targets[0])[0]
      return cost / math_ops.cast(batch_size, cost.dtype)
    else:
      return cost

输入参数:

logits:a list of [batch_size*symbol_nums] 2维

targets:a list of batch_size 1维

weights:每个时间步长的权重,和targets的shape一样。

返回:

一个float的标量,句子的平均log困惑度。

实现:

整个seq2seq通过以上几个函数就可以实现完了,然后需要计算seq2seq的loss。调用sequence_loss_by_example实现计算loss的功能。

sequence_loss_by_example

def sequence_loss_by_example(logits,
                             targets,
                             weights,
                             average_across_timesteps=True,
                             softmax_loss_function=None,
                             name=None):

  if len(targets) != len(logits) or len(weights) != len(logits):
    raise ValueError("Lengths of logits, weights, and targets must be the same "
                     "%d, %d, %d." % (len(logits), len(weights), len(targets)))
  with ops.name_scope(name, "sequence_loss_by_example",
                      logits + targets + weights):
    log_perp_list = []
    for logit, target, weight in zip(logits, targets, weights):
      if softmax_loss_function is None:
        # TODO(irving,ebrevdo): This reshape is needed because
        # sequence_loss_by_example is called with scalars sometimes, which
        # violates our general scalar strictness policy.
        target = array_ops.reshape(target, [-1])
        crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
            labels=target, logits=logit)
      else:
        crossent = softmax_loss_function(labels=target, logits=logit)
      log_perp_list.append(crossent * weight)
    log_perps = math_ops.add_n(log_perp_list)
    if average_across_timesteps:
      total_size = math_ops.add_n(weights)
      total_size += 1e-12  # Just to avoid division by 0 for all-0 weights.
      log_perps /= total_size
  return log_perps

输入:
logits:同上sequence_loss。

targets:同上sequence_loss。

weights:同上sequence_loss。注:可能句子中有的词会是padding得到的,所以可以通过weights减小padding的影响。

返回值:
1D batch-sized float Tensor:为每一个序列(一个batch中有batch_size个sequence)计算其log perplexity,也是名称中by_example的含义

实现:

首先我们看这么一段代码:

import tensorflow as tf  

A = tf.random_normal([5,4], dtype=tf.float32)  
B = tf.constant([1,2,1,3,3], dtype=tf.int32)  
w = tf.ones([5], dtype=tf.float32)  

D = tf.nn.seq2seq.sequence_loss_by_example([A], [B], [w])  

with tf.Session() as sess:  
    print(sess.run(D))  

输出:

[ 1.39524221  0.54694229  0.88238466  1.51492059  0.95956933]

就可以直观看到sequence_loss_by_example的含义,logits是一个二维的张量,比如是a*b,那么targets就是一个一维的张量长度为a,并且targets中元素的值是不能超过b的整形,32位的整数。也即是如果b等于4,那么targets中的元素的值都要小于4。weights就是一个一维的张量长度为a,并且是一个tf.float32的数。这是权重的意思。

logits、targets、weights都是列表,那么zip以后变成了一个包含tuple的列表,list[0]代表第一个cell的logit、target、weight。那么for循环之后的大小就是a list of [batch_size,]。但是此时请注意for循环后还有一个log_perps = math_ops.add_n(log_perp_list)的操作。会将list中的[batch_size,]的标量相加,得到一个batch_size大小的float tensor。

然后将batch_size大小的float tensor传回sequence_loss,除以batch_size得到一个标量。

attention_decoder

def attention_decoder(decoder_inputs,
                      initial_state,
                      attention_states,
                      cell,
                      output_size=None,
                      num_heads=1,
                      loop_function=None,
                      dtype=None,
                      scope=None,
                      initial_state_attention=False):

  if not decoder_inputs:
    raise ValueError("Must provide at least 1 input to attention decoder.")
  if num_heads < 1:
    raise ValueError("With less than 1 heads, use a non-attention decoder.")
  if attention_states.get_shape()[2].value is None:
    raise ValueError("Shape[2] of attention_states must be known: %s" %
                     attention_states.get_shape())
  if output_size is None:
    output_size = cell.output_size

  with variable_scope.variable_scope(
      scope or "attention_decoder", dtype=dtype) as scope:
    dtype = scope.dtype

    batch_size = array_ops.shape(decoder_inputs[0])[0]  # Needed for reshaping.
    attn_length = attention_states.get_shape()[1].value
    if attn_length is None:
      attn_length = array_ops.shape(attention_states)[1]
    attn_size = attention_states.get_shape()[2].value

    # To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
    hidden = array_ops.reshape(attention_states,
                               [-1, attn_length, 1, attn_size])
    hidden_features = []
    v = []
    attention_vec_size = attn_size  # Size of query vectors for attention.
    for a in xrange(num_heads):
      k = variable_scope.get_variable("AttnW_%d" % a,
                                      [1, 1, attn_size, attention_vec_size])
      hidden_features.append(nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
      v.append(
          variable_scope.get_variable("AttnV_%d" % a, [attention_vec_size]))

    state = initial_state

    def attention(query):
      """Put attention masks on hidden using hidden_features and query."""
      ds = []  # Results of attention reads will be stored here.
      if nest.is_sequence(query):  # If the query is a tuple, flatten it.
        query_list = nest.flatten(query)
        for q in query_list:  # Check that ndims == 2 if specified.
          ndims = q.get_shape().ndims
          if ndims:
            assert ndims == 2
        query = array_ops.concat(query_list, 1)
      for a in xrange(num_heads):
        with variable_scope.variable_scope("Attention_%d" % a):
          y = linear(query, attention_vec_size, True)
          y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
          # Attention mask is a softmax of v^T * tanh(...).
          s = math_ops.reduce_sum(v[a] * math_ops.tanh(hidden_features[a] + y),
                                  [2, 3])
          a = nn_ops.softmax(s)
          # Now calculate the attention-weighted vector d.
          d = math_ops.reduce_sum(
              array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden, [1, 2])
          ds.append(array_ops.reshape(d, [-1, attn_size]))
      return ds

    outputs = []
    prev = None
    batch_attn_size = array_ops.stack([batch_size, attn_size])
    attns = [
        array_ops.zeros(
            batch_attn_size, dtype=dtype) for _ in xrange(num_heads)
    ]
    for a in attns:  # Ensure the second shape of attention vectors is set.
      a.set_shape([None, attn_size])
    if initial_state_attention:
      attns = attention(initial_state)
    for i, inp in enumerate(decoder_inputs):
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      # If loop_function is set, we use it instead of decoder_inputs.
      if loop_function is not None and prev is not None:
        with variable_scope.variable_scope("loop_function", reuse=True):
          inp = loop_function(prev, i)
      # Merge input and previous attentions into one vector of the right size.
      input_size = inp.get_shape().with_rank(2)[1]
      if input_size.value is None:
        raise ValueError("Could not infer input size from input: %s" % inp.name)
      x = linear([inp] + attns, input_size, True)
      # Run the RNN.
      cell_output, state = cell(x, state)
      # Run the attention mechanism.
      if i == 0 and initial_state_attention:
        with variable_scope.variable_scope(
            variable_scope.get_variable_scope(), reuse=True):
          attns = attention(state)
      else:
        attns = attention(state)

      with variable_scope.variable_scope("AttnOutputProjection"):
        output = linear([cell_output] + attns, output_size, True)
      if loop_function is not None:
        prev = output
      outputs.append(output)

  return outputs, state

在网上大概搜了一下,关于attention的解释都模棱两可,有的甚至都是错的。首先希望来看源码的同学首先确保已经将NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE论文中的公式理解清楚,seq2seq模型详解:

这里写图片描述(1)

这里写图片描述(2)

tensorflow中的seq2seq的代码详解_第4张图片(3)

这里写图片描述(4)

这里写图片描述(5)

其次,在工程实现中,使用的多的是Grammar as a foreign language中的公式,也请各位确保理解。

tensorflow中的seq2seq的代码详解_第5张图片(6)

encoder输出的隐层状态 h1,...,hTA ,decoder的隐层状态 d1,...,dTB vTW1W2 是模型要学的参数。所谓的attention,就是在每个解码的时间步,对encoder的隐层状态进行加权求和,针对不同信息进行不同程度的注意力。那么我们的重点就是求出不同隐层状态对应的权重。源码中的attention机制里是最常见的一种,可以分为三步走:(1)通过当前隐层状态(d_{t})和关注的隐层状态 hi 求出对应权重 uti ;(2)softmax归一化为概率;(3)作为加权系数对不同隐层状态求和,得到一个的信息向量 dt 。后续的 dt 使用会因为具体任务有所差别。

再来看看attention_decoder的参数:
和基本的rnn_decoder相比(rnn_decoder(decoder_inputs, initial_state, cell, loop_function=None, scope=None))
多了几个参数:

attention_states:即图中的hi。attention_states的shape为[batch_size,atten_length,seq_size]。其中atten_length就是encoder的句长,atten_size就是每个cell的attention的size。

output_size=None:如果是None的话默认为cell.output_size

num_heads=1 :attention就是对信息的加权求和,一个attention head对应了一种加权求和方式,这个参数定义了用多少个attention head去加权求和。用多个head加权求和可以避免一个attention关注出现偏差的情况。

initial_state_attention=False:如果是True的话,attention由state和attention_states进行初始化,如果False,则attention初始化为0。

W1hi 用的是卷积的方式实现,返回的tensor的形状是[batch_size, attn_length, 1, attention_vec_size]

 # To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
hidden = array_ops.reshape(attention_states,
                               [-1, attn_length, 1, attn_size])
    hidden_features = []
    v = []
    attention_vec_size = attn_size  # Size of query vectors for attention.
    for a in xrange(num_heads):
      k = variable_scope.get_variable("AttnW_%d" % a,
                                      [1, 1, attn_size, attention_vec_size])
      hidden_features.append(nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
      v.append(
          variable_scope.get_variable("AttnV_%d" % a, [attention_vec_size]))

W2dt ,此项是通过下面的线性映射函数linear实现。

然后计算 uti=VTtanh(W1hi+W2dt) ,即下面代码中的s=…

然后计算softmax

然后计算 dt 。至此,公式(6)中的结果都已经计算完毕。

for a in xrange(num_heads):
        with variable_scope.variable_scope("Attention_%d" % a):
          y = linear(query, attention_vec_size, True)
          y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
          # Attention mask is a softmax of v^T * tanh(...).
          s = math_ops.reduce_sum(v[a] * math_ops.tanh(hidden_features[a] + y),
                                  [2, 3])
          a = nn_ops.softmax(s)
          # Now calculate the attention-weighted vector d.
          d = math_ops.reduce_sum(
              array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden, [1, 2])
          ds.append(array_ops.reshape(d, [-1, attn_size]))
      return ds

公式(6)计算完毕,就得到了公式(3)中的ci。然后计算时间步长i的隐藏状态si。
即对于时间步i的隐藏状态,由时间步i-1的隐藏状态si-1,由attention计算得到的输入内容ci和上一个输出yi-1得到。

x = linear([inp] + attns, input_size, True)
# Run the RNN.
cell_output, state = cell(x, state)
# Run the attention mechanism.
if i == 0 and initial_state_attention:
with variable_scope.variable_scope(
    variable_scope.get_variable_scope(), reuse=True):
  attns = attention(state)
else:
attns = attention(state)

然后得到了si,接下来要计算yi。即公式(1),对于时间步i的输出yi,由时间步i的隐藏状态si,由attention计算得到的输入内容ci和上一个输出yi-1得到。

with variable_scope.variable_scope("AttnOutputProjection"):
        output = linear([cell_output] + attns, output_size, True)

到这里,embedding_attention_seq2seq的核心代码都已经解读完毕了。在实际的运用,可以根据需求灵活使用各个函数,特别是attention_decoder函数。相信坚持阅读下来的小伙伴们,能对这个API有更深刻的认识。

参考文献:

(1)seq2seq模型详解

(2)dynamic_rnn详解

(3)NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

(4)Grammar as a foreign language

(5)Tensorflow源码解读(一):Attention Seq2Seq模型

(6)tensorflow的legacy_seq2seq(这篇文章错误较多)

(7)Seq2Seq with Attention and Beam Search

你可能感兴趣的:(对话系统,对话系统)