斯坦福大学网站:https://cs.stanford.edu/courses/schedules/2017-2018.autumn.php
Course |
Title |
Instructor |
Time |
Room |
cs1C |
Introduction to Computing at Stanford |
Smith |
by arrangement |
|
cs1U |
Practical Unix |
Zelenski/Sarka |
TTh 1:30-2:50 |
STLC 104 |
cs7 |
Personal Finance for Engineers |
Nash |
T 4:30-5:50 |
200-034 |
cs9 |
Problem-solving for the CS Technical Interview |
Cain/Lee |
T 3:00-4:50 |
STLC 111 |
cs28 |
AI, Entrepreneurship & Society in 21st Cntry & Bey |
Ganguli/Taneja |
M 4:30-5:50 |
HerrinT175 |
cs45N |
Computers and Photography: From Capture to Sharing |
Garcia-Molina |
MW 2:30-4:20 |
Gates 505 |
cs50 |
Using Tech for Good |
Cain |
MWF 12:30-1:20 |
STLC115 |
cs56N |
Great Discoveries and Inventions in Computing |
Hennessy |
TTh 9:00-10:20 |
STLC118 |
cs102 |
Big Data: Tools & Techniques, Discoveries & Pitfal |
Widom |
TTh 1:30-2:50 |
320-105 |
cs103 |
Mathematical Foundations of Computing |
Schwarz |
MWF 3:00-4:20 |
Nvidia Aud |
cs103A |
Mathematical Problem-solving Strategies |
Schwarz |
T 3:00-5:50 |
STLC115 |
cs105 |
Introduction to Computers |
Young |
MWF 1:30-2:20 |
HerrinT175 |
cs106A |
Programming Methodology |
Sahami |
MWF 1:30-2:20 |
Hewlett200/201 |
cs106AJ |
Programming Methodology in JavaScript |
Cain |
MWF 10:30-11:20 |
300-300 |
cs106B |
Programming Abstractions |
Lee |
MWF 12:30-1:20 |
Nvidia Aud |
cs106X |
Programming Abstractions (Accelerated) |
Stepp |
MWF 12:30-1:20 |
420-041 |
cs107 |
Computer Organization and Systems |
Zelenski/Gregg |
MF 1:30-2:50 |
CubberleyAud |
cs108 |
Object-Oriented Systems Design |
Young |
MW 3:00-4:20 |
530-127 |
cs109 |
Intro to Probability for Computer Scientists |
Piech |
MWF 3:30-4:20 |
Hewlett200 |
cs110 |
Principles of Computer Systems |
Cain |
MWF 1:30-2:50 |
Skilling Aud |
cs131 |
Computer Vision: Foundations and Applications |
Niebles Duque/ |
TTh 1:30-2:50 |
200-002 |
cs142 |
Web Applications |
Rosenblum |
MWF 10:30-11:20 |
200-002 |
cs144 |
Introduction to Computer Networking |
Levis/McKeown |
MW 3:00-4:20 |
Skilling Aud |
cs145 |
Introduction to Databases |
Bailis |
TTh 3:00-4:20 |
Nvidia Aud |
cs146 |
Introduction to Game Design and Development |
James/Riedel-K |
TTh 4:30-5:50 |
380-380C |
cs147 |
Introduction to Human-Computer Interaction Design |
Landay |
MW 11:30-1:20 |
Hewlett 201 |
cs148 |
Introduction to Computer Graphics and Imaging |
Fedkiw |
TTh 12:00-1:20 |
Nvidia Aud |
cs154 |
Introduction to Automata and Complexity Theory |
Reingold |
TTh 10:30-11:50 |
Skilling Aud |
cs157 |
Logic and Automated Reasoning |
Genesereth |
TTh 12:00-1:20 |
Gates B01 |
cs161 |
Design and Analysis of Algorithms |
Wootters |
MW 1:30-2:50 |
370-370 |
cs183E |
Effective Leadership in High-tech |
Finley/Goldfei |
W 4:30-5:50 |
300-303 |
cs191 |
Senior Project |
(none listed) |
by arrangement |
|
cs191W |
Writing Intensive Senior Project |
(none listed) |
by arrangement |
|
cs192 |
Programming Service Project |
(none listed) |
by arrangement |
|
cs193P |
iOS Application Development |
Hegarty |
MW 4:30-5:50 |
Hewlett200 |
cs198 |
Teaching Computer Science |
Sahami/Conklin |
M 4:30-6:20 |
370-370 |
cs198B |
Additional Topics in Teaching Computer Science |
Sahami/Conklin |
TTh 4:30-5:20 |
MitchB67 |
cs199 |
Independent Work |
(none listed) |
by arrangement |
|
cs199P |
Independent Work |
(none listed) |
by arrangement |
|
cs202 |
Law for Computer Science Professionals |
Hansen |
Th 4:30-5:50 |
Lathrop 299 |
cs206 |
Exploring Computational Journalism |
Hamilton/Agraw |
T 1:30-3:20 |
JSK Fell Garage |
cs208E |
Great Ideas in Computer Science |
Gregg |
TTh 1:30-2:50 |
160-319 |
cs221 |
Artificial Intelligence: Principles & Techniques |
Liang/Ermon |
MW 1:30-2:50 |
Nvidia Aud |
cs224W |
Analysis of Networks |
Leskovec |
TTh 1:30-2:50 |
Nvidia Aud |
cs229 |
Machine Learning |
Ng/Boneh |
MW 9:30-10:50 |
Nvidia Aud |
cs230 |
Deep Learning |
Ng/Katanforoos |
M 11:30-12:50 |
Hewlett 102 |
cs238 |
Decision Making under Uncertainty |
Kochenderfer |
MW 1:30-2:50 |
GatesB01 |
cs241 |
Embedded Systems Workshop |
Levis/Horowitz |
MW 10:30-12:20 |
HerrinT185 |
cs242 |
Programming Languages |
Crichton |
MW 4:30-5:50 |
Skilling Aud |
cs244B |
Distributed Systems |
Mazieres |
MW 3:00-4:20 |
Thornton 102 |
cs265 |
Randomized Algorithms and Probabilistic Analysis |
Valiant |
TTh 10:30-11:50 |
STLC115 |
cs273B |
Deep Learning in Genomics and Biomedicine |
Kundaje/Zou |
MW 3:00-4:20 |
Hewlett201 |
cs274 |
Reps and Algor for Computational Molecular Bio |
Altman |
TTh 4:30-5:50 |
Gates B01 |
cs279 |
Comp Biology: Struct & Org of Biomolecules & Cells |
Dror |
TTh 3:00-4:20 |
Shriram104 |
cs300 |
Departmental Lecture Series |
Ousterhout |
MW 4:30-5:50 |
370-370 |
cs309A |
Cloud Computing Seminar |
Chou |
T 4:30-5:50 |
Skilling Aud |
cs315B |
Parallel Computing Research Project |
Aiken |
TTh 3:00-4:20 |
200-219 |
cs325B |
Data for Sustainable Development |
Ermon/Lobell |
T 1:30-4:20 |
Shriram 108 |
cs326 |
Topics in Advanced Robotic Manipulation |
Bohg |
TTh 10:30-11:50 |
Education 207 |
cs331B |
Representation Learning in Computer Vision |
Savarese/Zahir |
M 1:30-4:20 |
Campbell 126 |
cs332 |
Advanced Survey of Reinforcement Learning |
Brunskill |
MW 1:30-2:50 |
HerrinT195 |
cs333 |
Safe and Interactive Robotics |
Sadigh |
TTh 3:00-4:20 |
McMurtry 360 |
cs348C |
Computer Graphics: Animation and Simulation |
James |
TTh 1:30-2:50 |
GatesB12 |
cs349D |
Cloud Computing Technology |
Kozyrakis/Zaha |
MW 10:30-12:20 |
380-380W |
cs375 |
Large-Scale Neural Net Modeling for Neuroscience |
Yamins |
MW 4:30-5:50 PM |
Lathrop299 |
cs376 |
Human-Computer Interaction Research |
Bernstein |
MW 3:00-4:20 |
Littlefield107 |
cs390A |
Curricular Practical Training |
(none listed) |
by arrangement |
|
cs390B |
Curricular Practical Training |
(none listed) |
by arrangement |
|
cs390C |
Curricular Practical Training |
(none listed) |
by arrangement |
|
cs390P |
Part-time Curricular Practical Training |
(none listed) |
by arrangement |
|
cs393 |
Computer Laboratory |
(none listed) |
by arrangement |
|
cs395 |
Independent Database Project |
(none listed) |
by arrangement |
|
cs399 |
Independent Project |
(none listed) |
by arrangement |
|
cs399P |
Independent Project |
(none listed) |
by arrangement |
|
cs428 |
Computation and Cognition: Probabilistic Approach |
Goodman |
TTh 1:30-2:50 PM |
200-305 |
cs448B |
Data Visualization |
Agrawala |
MW 4:30-5:50 PM |
Lathrop 282 |
cs476A |
Music, Computing and Design I |
Wang |
MW 3:30-5:20 |
Knoll217 |
cs499 |
Advanced Reading and Research |
(none listed) |
by arrangement |
|
cs499P |
Advanced Reading and Research |
(none listed) |
by arrangement |
|
cs522 |
Seminar in Artificial Intelligence in Healthcare |
Dror |
Th 4:30-5:20 |
Hewlett200 |
cs53SI |
Discussion in Tech for Good |
Sahami |
T 4:30-6:20pm |
200-107 |
cs544 |
Mobile Computing Seminar |
James/Riedel-K |
T 4:30-5:50 |
420-041 |
cs547 |
Human-Computer Interaction Seminar |
Bernstein |
F 12:30-2:20 |
Gates B01 |
cs581 |
Media Innovation |
Grimes |
T 12:00-1:20 |
Gates 176 |
cs801 |
TGR Project |
(none listed) |
by arrangement |
|
cs802 |
TGR Dissertation |
(none listed) |
by arrangement |
|
机器学习(Machine Learning,简称 ML)和计算机视觉(Computer Vision,简称 CV)是非常令人着迷、非常酷炫、颇具挑战性同时也是涉及面很广的领域。本文整理了机器学习和计算机视觉的相关学习资源,目的是帮助许多和我一样希望深刻理解“智能”背后原理的人,用最为高效的方式学习最为前沿的技术和知识。
另外请见我后一篇博客里列的数据挖掘的学习资源。
wikipedia.org,历史,领域概述,资源链接:
Machine learning,介绍了ML所处理的问题、常用算法、应用、软件等,右侧列举了细分条目;
List of machine learning concepts,Category:Machine learning,列举出了更多ML相关概念和条目;
Computer vision,同样,介绍了CV所处理的问题、常用方法、应用等,底部列举了细分条目;
List of computer vision topics,Category:Computer vision,列举了更多CV相关条目。
大学课程、在线教程:
Stanford 关于ML和CV计算机课程(按推荐排序):
1、Andrew NG机器学习课程网易公开课:http://open.163.com/special/opencourse/machinelearning.html
2、机器学习课程教学官网: http://cs229.stanford.edu/syllabus.html
3、Coursera最新版:https://www.coursera.org/learn/machine-learning/
cs229 Machine Learning,
cs229T Statistical Learning Theory,
cs231N Convolutional Neural Networks for Visual Recognition,
cs231A Computer Vision:From 3D Recontruct to Recognition,
cs231B The Cutting Edge of Computer Vision,
cs221 Artificial Intelligence: Principles & Techniques,
cs131 Computer Vision: Foundations and Applications,
cs369L A Theoretical Perspective on Machine Learning,
cs205A Mathematical Methods for Robotics, Vision & Graph,
cs231MMobile Computer Vision,
这些课程大都可以下载PPT,更多课程请见Courses | Stanford Computer Science,Open class room的ML课程Machine Learning,Unsupervised Feature Learning and Deep Learning,Coursera的ML课程:Machine Learning,以及Stanford在线教程Deep learning tuorial;
更多大学课程可以用“machine learning course”或“computer vision course”为关键字搜索,这里是Google的国内镜像,这样就不需要FanQiang了。
专著、书籍:
ML:
机器学习,周志华,2016;
统计学习方法,李航,2012;
Deep Learning: Methods and Applications, Li Deng and Dong Yu, 2014;
Introduction to Machine Learning (3rd ed.), Ethem Alpaydin, 2014;
Machine Learning: An Algorithmic Perspective (2nd ed.), Stephen Marsland, 2015;
Deep Learning,一本在线书籍;
Neural Networks and Learning Machines (3rd ed.), Simon O. Haykin, 2008;有中文译本:神经网络与机器学习;
Pattern Recognition and Machine Learning, Christopher Bishop, 2006;有中文译本:模式识别与机器学习;
Machine Learning: a Probabilistic Perspective, Kevin P. Murphy, 2012;
CV:
Concise Computer Vision: An Introduction into Theory and Algorithms, Klette, Reinhard, 2014;
Computer Vision: Algorithms and Applications, Szeliski, Richard, 2011;有中文译本:计算机视觉——算法与应用;
Multiple View Geometry in Computer Vision (2nd ed.), Richard Hartley and Andrew Zisserman, 2004;
An Invitation to 3-D Vision: From Images to Geometric Models, Yi Ma, Stefano Soatto, Jana Kosecka, S. Shankar Sastry, 2004;
Robot vision, Berthold K. P. Horn, 1986;有中文译本:机器视觉;
Image Processing, Analysis, and Machine Vision (3rd ed.), Milan Sonka, Vaclav Hlavac, Roger Boyle, 2007;有中文译本:图像处理、分析与机器视觉;
推荐一个非常好的搜索英文电子书的网站:Library Genesis。
学术论文:
ML、CV领域的顶级期刊:TPAMI,IJCV,学术会议:ACL,CVPR,ICML,ICCV,NIPS,ECCV,ACCV等;
CVPapers 对CV领域学术论文做了很好的整理;
ImageNet 每年举办的图像识别比赛很能代表CV最高水平,MS COCO是类似比赛,KITTI上有很多数据以及CV算法的排名,这里是一个数据集的列表,这里是CV数据集;
arXiv.org,很多最新论文首先发表在这里;
当然还是推荐Google Scholar,这里是一个镜像网站。
学习网站:
deeplearning.net:一个非常好的机器学习网站,有dataset、software、reading list连接;
VisionBib.Com:学术大牛整理的CV资源;
CVonline有一个非常全面的资源链接;
新智元和机器之心是很好的机器学习资讯平台,另外推荐一些微信公众号:机器学习研究会,程序媛的日常。
程序、库:
OpenCV:一个C++视觉库,使用广泛;
Torch, Theano:两个很强大的支持CUDA显卡加速的Python机器学习库;
Caffe:很多研究者使用的Deep Learning库;
R语言:一个方便开发机器学习程序的环境;