原 YOLO源码详解(五)-追本溯源7*7个grid
原 YOLO源码详解(五)- YOLO中的7*7个grid和RPN中的9个anchors
原 YOLO源码详解(四)- 反向传播(back propagation)
原 YOLOv2如何fine-tuning?
原 用YOLOv2模型训练VOC数据集
原 YOLO源码详解(三)- 前向传播(forward)
原 YOLO源码详解(二)- 函数剖析
原 YOLO源码详解(一)-训练
detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
{
detection_layer l = {0};
l.type = DETECTION;
l.n = n;//对应论文里面的B,表示每个cell生成的bounding box数。
l.batch = batch;
l.inputs = inputs;//输入detection的维度,计算方式根据论文是S*S*(B*5 + C),论文里面对应7*7*(2*5 + 20)
l.classes = classes;//类别数,论文里面对应是20
l.coords = coords;//坐标,(x,y,w,h), (x,y)是相对于网格的数值[0,1],(w,h),是相对于整个图片的大小。
l.rescore = rescore;
l.side = side;//网格side*side
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
l.cost = calloc(1, sizeof(float));
l.outputs = l.inputs;
l.truths = l.side*l.side*(1+l.coords+l.classes);
l.output = calloc(batch*l.outputs, sizeof(float));
l.delta = calloc(batch*l.outputs, sizeof(float));
#ifdef GPU
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
fprintf(stderr, "Detection Layer\n");
srand(0);
return l;
}
void forward_detection_layer(const detection_layer l, network_state state) { int locations = l.side*l.side; int i, j; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); int b; if (l.softmax){ for (b = 0; b < l.batch; ++b){ int index = b*l.inputs; for (i = 0; i < locations; ++i) { int offset = i*l.classes; softmax_array(l.output + index + offset, l.classes, 1, l.output + index + offset); } int offset = locations*l.classes; activate_array(l.output + index + offset, locations*l.n*(1 + l.coords), LOGISTIC); } } if (state.train){ float avg_iou = 0; float avg_cat = 0; float avg_allcat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; *(l.cost) = 0; int size = l.inputs * l.batch; memset(l.delta, 0, size * sizeof(float)); for (b = 0; b < l.batch; ++b){ int index = b*l.inputs; for (i = 0; i < locations; ++i) { //truth 的存储方式是 [l.side*l.side*(1+l.classes+l.coords)] int truth_index = (b*locations + i)*(1 + l.coords + l.classes);//这个地方表示的是输入图片的gound truth的index int is_obj = state.truth[truth_index];//表示这个cell是否是object,数据存放在state里面 for (j = 0; j < l.n; ++j) {//计算noobj这一项的损失 int p_index = index + locations*l.classes + i*l.n + j; //b*l.inputs + locations*l.classes + i*l.n + j; //inputs 的存储方式是 [l.side*l.side*l.classes][l.side*l.side*l.n][l.side*l.side*l.n*l.coords] l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);//对应论文损失的第四项。这个计算很是奇怪,论文里面还是要判断一下是否是noobj????他怎么没有判断就直接计算了 *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);//同上 avg_anyobj += l.output[p_index]; } int best_index = -1; float best_iou = 0; float best_rmse = 20; if (!is_obj){ continue; } //后面都是对应于object的情况。 int class_index = index + i*l.classes; for (j = 0; j < l.classes; ++j) { l.delta[class_index + j] = l.class_scale * (state.truth[truth_index + 1 + j] - l.output[class_index + j]);//对应论文五项损失的第五项 *(l.cost) += l.class_scale * pow(state.truth[truth_index + 1 + j] - l.output[class_index + j], 2); if (state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index + j];//float类型做判断这样写不太好。 avg_allcat += l.output[class_index + j]; }//l.classes box truth = float_to_box(state.truth + truth_index + 1 + l.classes);//进行了loaction 对应 truth的获取。 truth.x /= l.side;//这个地方的计算不清楚。 truth.y /= l.side; for (j = 0; j < l.n; ++j){ int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; box out = float_to_box(l.output + box_index);//cell里面预测的boundingbox out.x /= l.side;//同上面的不清楚 out.y /= l.side; if (l.sqrt){ out.w = out.w*out.w; out.h = out.h*out.h; }//if float iou = box_iou(out, truth);//计算iou值,即out与truth的交除以他们的并。 //iou = 0; float rmse = box_rmse(out, truth);//这个是计算boundingbox各项之间的差的平方和的开根号。 if (best_iou > 0 || iou > 0){ if (iou > best_iou){ best_iou = iou; best_index = j;//存放cell里面最好的预测的boundingbox的idx } } else{ if (rmse < best_rmse){ best_rmse = rmse; best_index = j; } }//if }//for if (l.forced){//?? if (truth.w*truth.h < .1){ best_index = 1; } else{ best_index = 0; } } int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; int tbox_index = truth_index + 1 + l.classes; box out = float_to_box(l.output + box_index); out.x /= l.side; out.y /= l.side; if (l.sqrt) { out.w = out.w*out.w; out.h = out.h*out.h; } float iou = box_iou(out, truth); //printf("%d,", best_index); int p_index = index + locations*l.classes + i*l.n + best_index; //对应于论文里面的第三项。 *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);//这里揭开前面的问题,这里相当于已经判定是objcet,就把之前算在里面noobjcet的减掉。 *(l.cost) += l.object_scale * pow(1 - l.output[p_index], 2); avg_obj += l.output[p_index]; l.delta[p_index] = l.object_scale * (1. - l.output[p_index]);//这里就覆盖到之前被noobject赋值的数。 if (l.rescore){ l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); } //下面的四个对应于论文里面损失的第一项和第二项。 l.delta[box_index + 0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); l.delta[box_index + 1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); l.delta[box_index + 2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); l.delta[box_index + 3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); if (l.sqrt){ l.delta[box_index + 2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); l.delta[box_index + 3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); } *(l.cost) += pow(1 - iou, 2); avg_iou += iou; ++count; } if (l.softmax){ gradient_array(l.output + index + locations*l.classes, locations*l.n*(1 + l.coords), LOGISTIC, l.delta + index + locations*l.classes); } }//loaction printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou / count, avg_cat / count, avg_allcat / (count*l.classes), avg_obj / count, avg_anyobj / (l.batch*locations*l.n), count); }//batchsize }
转载自:https://blog.csdn.net/u012235274/article/details/51871446