备注:具有GPU运算能力
【实验目标】
使用自己的图片集,以及caffe框架,对imagenet进行训练,得到自己的model。
【前期准备】
1. 安装并配置caffe环境
【实验过程】
1. 数据集准备
获取训练图片集与验证图片集,并产生train.txt与val.txt,内容为图片路径与分类标签;将图片进行大小重设,设置为256*256大小;使用create_imagenet.sh脚本将2组图片集转换为lmbp格式。
2. 计算图像均值
使用make_imagenet_mean.sh计算图像均值,产生imagenet_mean.binaryproto文件。
3. 设置网络参数
拷贝caffe-master/model/bvlc_reference_caffenet中的文件,修改train_val.prototxt,solver.prototxt中的运行参数,并进行路径的修改;拷贝caffe_master/examples/imagenet中的train_caffnet.sh文件,对路径进行修改。
4. 运行train_caffnet.sh
【实验过程详细版】
备注一下目录的情况,这样比较调理啦:
Caffe根目录:caffe_root=/home/james/caffe/
图片类数据:caffe_root/data/mydata
命令参数类数据:caffe_root/examples/mytask
注:默认我们手动添加的除图片以及.txt之外的文件都属于命令参数类数据,运行的时候注意路径就好,另外,我门在实验的时候换了别人的电脑,因此存在caffe根路径前后不一致的状况,大家注意一下就好。
参考https://blog.csdn.net/sinat_34474705/article/details/77101661
有时候我们还需要创建自己的数据集进行训练。本篇博客讲的就是如何利用Caffe中的模块创建自己lmdb数据集。
我们需要自己准备好带类别标签的图片数据,并将数据统一命名,这里为了方便,我直接从CIFAR10训练集中拿出5000张图片用于制作验证集,图片为.png格式,并采用‘图片编号_类别标签.png’的命名方式(这个实现起来应该不难,这里就不赘述了),保存在一个文件夹下,部分例子如下:
这里我们需要创建一个txt文本用来存放所有图片的信息,文本中每行存放一个样本,内容包括图片名和类别标签信息,中间用空格分开。这个实现方法很多,这里我给出一个用python实现的方法:
import os
def create_image_list(file_path,txtpath):
"""
Create a list of all images and save to a '.txt' file, each image is
named as'num_label.png'. For example: 1001_2.png
Inputs:
file_path: path of image file
txtpath: '.txt' file used to save all images' names and labels
Return: none
"""
# remove the old list file
if os.path.isfile(txtpath):
os.remove(txtpath)
# get the name list of all images
image_name_list = os.listdir(file_path)
# save the names and labels of all images to the '.txt' file named 'txtname'
with open(txtpath,'a') as f:
print 'saving to '+txtpath+'...'
for image_name in image_name_list:
image_label = image_name.split('_')[1].split('.')[0]
image_data = image_name+' '+image_label
f.write(image_data+'\n')
print 'done.'
注意:代码中输入参数的路径都是绝对路径,当然如果感觉用绝对路径麻烦也该以稍微改动一下变成相对路径。
自己写代码调用上面这个函数,就可以生成下面的txt文本:
1、准备数据
首先很重要的一点,我们需要准备若干种不同类型的图片进行分类。这里我选择从ImageNet上下载了3个分类的图片(Cat,Dog,Fish)。
图片需要分两批:训练集(train)、测试集(test),一般训练集与测试集的比例大概是5:1以上,此外每个分类的图片也不能太少,我这里每个分类大概选了5000张训练图+1000张测试图。
找好图片以后,需要准备以下文件:
words.txt:分类序号与分类对应关系(注意:要从0开始标注)
0 cat
1 dog
2 fish
train.txt:标明训练图片路径及其对应分类,路径和分类序号直接用空格分隔,最好随机打乱一下图片
/opt/caffe/examples/my_simple_image/data/cat_train/n02123045_4416.JPEG 0 /opt/caffe/examples/my_simple_image/data/cat_train/n02123045_3568.JPEG 0 /opt/caffe/examples/my_simple_image/data/fish_train/n02512053_4451.JPEG 2 /opt/caffe/examples/my_simple_image/data/cat_train/n02123045_3179.JPEG 0 /opt/caffe/examples/my_simple_image/data/cat_train/n02123045_6956.JPEG 0 /opt/caffe/examples/my_simple_image/data/cat_train/n02123045_10143.JPEG 0
......
val.txt:标明测试图片路径及其对应分类
/opt/caffe/examples/my_simple_image/data/dog_val/n02084071_12307.JPEG 1 /opt/caffe/examples/my_simple_image/data/dog_val/n02084071_10619.JPEG 1 /opt/caffe/examples/my_simple_image/data/cat_val/n02123045_13360.JPEG 0 /opt/caffe/examples/my_simple_image/data/cat_val/n02123045_13060.JPEG 0 /opt/caffe/examples/my_simple_image/data/cat_val/n02123045_11859.JPEG 0
......
1. 数据集准备
a. 准备训练图片集以及验证图片集
新建caffe_root/data/mydata,分别将图片集放置于caffe_root/data/mydata/train与caffe_root/data/mydata/val下面
b. 准备图片清单
在caffe_root/data/mydata下面新建两个文件train.txt与val.txt,train.txt中的内容为:
1.jpg 7
2.jpg7
3.jpg 7
…
以上格式为图片名称+空格+类标(数字)的格式,val.txt的格式也是一样的(同样需要类标)。
此步可以使用create_filelist.sh进行批量添加图片路径至train.txt。create_filelist.sh内容需要按照自身图片的名称与类标情况进行修改,并持续运行(因为是在文件后面追加)内容如下:
#!/usr/bin/env sh
#!/bin/bash
DATA=/home/james/caffe/data/mydata/val
MY=/home/james/caffe/data/mydata
for i in {3122..3221}
do
echo $i.jpg 3 >> $MY/val.txt
done
echo "All done"
以上命令意思是,在val文件夹下面的图片中,名称为3122.jpg至3221.jpg的图片都是第3类,因此就会在val.txt写入:
3122.jpg 3
3123.jpg 3
…
注意:此时可能会报出bad loop variable的错误,这是由于Ubuntu bash的版本的原因,可以自行查看如何解决。
c. 调整图片大小至256*256
因为之前没有仔细看caffe的相关文件,后来才知道可以使用之自动调整大小,因此此步采用的是自己调用命令进行调整大小。如果不调整图片大小的话,在运行后面命令的时候是会报错的。
可以使用convert256.sh进行转换。注意,该命令中用到了imagemagick工具,因此如果自己没有安装的话,还需要安装该工具(命令为:sudo apt-get install imagemagick)。convert256.sh内容如下:
for name in/home/james/caffe/data/mydata/train/*.jpg; do
convert -resize 256x256\! $name $name
done
这里我们用到的是Caffe下自带的convert_imageset可执行文件,如果你已经成功编译Caffe,这个文件应该在caffe-master/build/tools/下。要用这个可执行文件,我们需要提供三个路径,分别是原始图片数据存放路径、图片列表清单路径(就是之前生成的txt文本路径)和生成的lmdb文件存放路径,这里给出我之前转化数据集时用的脚本:
#!/bin/bash
# convert images to lmdb
DATA=/home/meringue/DataBase/cifar-10-batches-py
IMGDIRNAME=train_valid
IMGLIST=img_name_list/train_valid.txt
LMDBNAME=train_valid_lmdb
rm -rf $DATA/$LMDBNAME
echo 'converting images...'
/home/meringue/Softwares/caffe-master/build/tools/convert_imageset --shuffle=true \
$DATA/$IMGDIRNAME/ $DATA/$IMGLIST $DATA/$LMDBNAME
上面代码中的参数shuffle=true表示打乱数据,还有很多其他参数设置可以在caffe-master/tools/convert_imageset.cpp中查看。
转化速度很快,运行结束后,我们可以在程序中指定的lmdb路径下看到类似下面的文件:
为了保险起见,最好看一下data.mdb这个文件的大小,当你的数据比较大的时候,这个文件也因该很大。如果发现data.mdb很小,说明转化的时候出现了问题,回去检查一下。一般我们最后需要给lmdb数据添加可读权限,可以通过linux下sudo chmod 777 -R ./PATH 获取所有权限。否则有时候程序调用会出现类似没有权限的错误。
使用对应的数据集创建lmdb:
这里使用 examples/imagenet/create_imagenet.sh,需要更改其路径和尺寸设置的选项,为了减小更改的数目,这里并没有自己新创建一个文件夹,而是直接使用了原来的imagenet的文件夹,而且将train.txt,val.txt都放置于/data/ilsvrc12中,
TRAIN_DATA_ROOT=/home/beatree/caffe-rc3/examples/imagenet/train/
VAL_DATA_ROOT=/home/beatree/caffe-rc3/examples/imagenet/val/
RESIZE=true
注意下面的地址的含义:
echo "Creating train lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/ilsvrc12_train_lmdb
主要用了tools里的convert_imageset
2、生成lmdb文件
lmdb是caffe使用的一种输入数据格式,相当于我们把图片及其分类重新整合一下,变成一个数据库输给caffe训练。
这里我们使用caffenet的create_imagenet.sh文件修改,主要是重新指定一下路径:
EXAMPLE=examples/my_simple_image/ DATA=examples/my_simple_image/data/ TOOLS=build/tools TRAIN_DATA_ROOT=/ VAL_DATA_ROOT=/ # 这里我们打开resize,需要把所有图片尺寸统一 RESIZE=true if $RESIZE; then RESIZE_HEIGHT=256 RESIZE_WIDTH=256 else RESIZE_HEIGHT=0 RESIZE_WIDTH=0 fi ....... echo "Creating train lmdb..." GLOG_logtostderr=1 $TOOLS/convert_imageset \ --resize_height=$RESIZE_HEIGHT \ --resize_width=$RESIZE_WIDTH \ --shuffle \ $TRAIN_DATA_ROOT \ $DATA/train.txt \ $EXAMPLE/ilsvrc12_train_lmdb #生成的lmdb路径 echo "Creating val lmdb..." GLOG_logtostderr=1 $TOOLS/convert_imageset \ --resize_height=$RESIZE_HEIGHT \ --resize_width=$RESIZE_WIDTH \ --shuffle \ $VAL_DATA_ROOT \ $DATA/val.txt \ $EXAMPLE/ilsvrc12_val_lmdb #生成的lmdb路径
echo "Done."
d. 构建图片数据库
要让Caffe进行图片的训练,必须有图片数据库,并且也是使用其作为输入,而非直接使用图片作为输入。使用create_imagenet.sh脚本将train与val的2组图片集转换为lmbp格式。create_imagenet.sh内容如下:
#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train +val data dirs
EXAMPLE=/home/james/caffe/examples/mytask
DATA=/home/james/caffe/data/mydata
TOOLS=/home/james/caffe/build/tools
TRAIN_DATA_ROOT=/home/james/caffe/data/mydata/train/
VAL_DATA_ROOT=/home/james/caffe/data/mydata/val/
# Set RESIZE=true to resize the images to256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=false
if $RESIZE; then
RESIZE_HEIGHT=256
RESIZE_WIDTH=256
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi
if [ ! -d "$TRAIN_DATA_ROOT" ];then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory:$TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to thepath" \
"where the ImageNet training data is stored."
exit 1
fi
if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory:$VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to thepath" \
"where the ImageNet validation data is stored."
exit 1
fi
echo "Creating train lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset\
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/ilsvrc12_train_lmdb
echo "Creating val lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset\
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$DATA/val.txt \
$EXAMPLE/ilsvrc12_val_lmdb
echo "Done."
注:将其中的地址均修改为自己的对应地址,不是地址的就不要强行修改啦。
模型需要我们从每张图片减去均值,所以我们需要获得训练的均值,直接利用./examples/imagenet/make_imagenet_mean.sh创建均值文件binaryproto,如果之前创建了新的路径,这里同样需要修改sh文件里的路径。
这里的主要语句是
$TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \
$DATA/imagenet_mean.binaryproto
如果显示Check failed: size_in_datum == data_size () Incorrect data field size
说明上一步的图片没有统一尺寸
3、生成mean_file
下面我们用lmdb生成mean_file,用于训练(具体做啥用的我还没研究。。。)
这里也是用imagenet例子的脚本:
EXAMPLE=examples/my_simple_image
DATA=examples/my_simple_image
TOOLS=build/tools
$TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb $DATA/imagenet_mean.binaryproto echo "Done."
2. 计算图像均值
据说计算图像均值之后的训练效果会更好,使用make_imagenet_mean.sh计算图像均值,产生imagenet_mean.binaryproto文件。make_imagenet_mean.sh文件内容如下:
#!/usr/bin/env sh
# Compute the mean image from the imagenettraining lmdb
# N.B. this is available in data/ilsvrc12
EXAMPLE=/home/james/caffe/examples/mytask
DATA=/home/james/caffe/data/mydata/
TOOLS=/home/james/caffe/build/tools
TOOLS/computeimagemeanTOOLS/computeimagemeanEXAMPLE/ilsvrc12_train_lmdb \
$DATA/imagenet_mean.binaryproto
echo "Done."
注:将其中的地址修改为自己的地址,并且产生的imagenet_mean.binaryproto文件在data/mydata文件夹下,稍后设置的时候注意该路径。
这里是利用原文的网络设置tain_val.prototxt和slover.prototext,在models/bvlc_reference_caffenet/solver.prototxt路径中,这里的训练和验证的网络基本一样用 include { phase: TRAIN } or include { phase: TEST }
和来区分,其两点不同之处具体为:
transform_param {
mirror: true#不同1:训练集会randomly mirrors the input image
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "examples/imagenet/ilsvrc12_train_lmdb"#不同2:来源不同
batch_size: 32#原文很大,显卡比较弱的会内存不足,这里改为了32,这里根据需要更改,验证集和训练集的设置也不一样
backend: LMDB
}
另外在输出层也有不同,训练时的loss需要用来进行反向传递,而val就不需要了。
solver.protxt的改动:
根据
net: "/home/beatree/caffe-rc3/examples/imagenet/train_val.prototxt"#网络配置存放地址
test_iter: 4, 每个批次是50,一共200个
test_interval: 300 #每300次测试一次
base_lr: 0.01 #是基础学习率,因为数据量小,0.01 就会下降太快了,因此可以改成 0.001,这里博主没有改
lr_policy: "step" #lr可以变化
gamma: 0.1 #学习率变化的比率
stepsize: 300
display: 20 #20层显示一次
max_iter: 1200 一共迭代1200次
momentum: 0.9
weight_decay: 0.0005
snapshot: 600 #每600存一个状态
snapshot_prefix: "/home/beatree/caffe-rc3/examples/imagenet/"#状态存放地址
4、修改solver、train_val配置文件
这里我们可以选用cifar的网络,也可以用imagenet的网络,不过后者的网络结构更复杂一些,为了学习,我们就用cifar的网络来改。
把cifar的两个配置文件拷过来:
cifar10_quick_solver.prototxt
cifar10_quick_train_test.prototxt
首先修改cifar10_quick_train_test.prototxt的路径以及输出层数量(标注出黑体的部分):
name: "CIFAR10_quick"
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "examples/my_simple_image/imagenet_mean.binaryproto" } data_param {
source: "examples/my_simple_image/ilsvrc12_train_lmdb" batch_size: 50 #一次训练的图片数量,一般指定50也够了 backend: LMDB } } layer { name: "cifar" type: "Data" top: "data" top: "label" include { phase: TEST } transform_param { mean_file: "examples/my_simple_image/imagenet_mean.binaryproto" } data_param { source: "examples/my_simple_image/ilsvrc12_val_lmdb" batch_size: 50 #一次训练的图片数量 backend: LMDB } }
..........
layer { name: "ip2" type: "InnerProduct" bottom: "ip1" top: "ip2" .......... inner_product_param { num_output: 3 #输出层数量,就是你要分类的个数 weight_filler { type: "gaussian" std: 0.1 } bias_filler { type: "constant" } } } ......
cifar10_quick_solver.prototxt的修改根据自己的实际需要:
net: "examples/my_simple_image/cifar/cifar10_quick_train_test.prototxt" #网络文件路径
test_iter: 20 #测试执行的迭代次数
test_interval: 10 #迭代多少次进行测试 base_lr: 0.001 #迭代速率,这里我们改小了一个数量级,因为数据比较少 momentum: 0.9 weight_decay: 0.004 lr_policy: "fixed" #采用固定学习速率的模式display: 1 #迭代几次就显示一下信息,这里我为了及时跟踪效果,改成1 max_iter: 4000 #最大迭代次数 snapshot: 1000 #迭代多少次生成一次快照 snapshot_prefix: "examples/my_simple_image/cifar/cifar10_quick" #快照路径和前缀 solver_mode: CPU #CPU或者GPU
3. 设置训练参数
拷贝caffe-master/model/bvlc_reference_caffenet中的文件,修改train_val.prototxt,solver.prototxt中的运行参数,并进行路径的修改;拷贝caffe_master/examples/imagenet中的train_caffnet.sh文件,对路径进行修改。
train_val.prototxt是网络的结构,内容如下:
name: "CaffeNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file:"/home/dina/caffe/examples/mytask/imagenet_mean.binaryproto"
}
# mean pixel / channel-wise mean instead ofmean image
# transform_param {
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# mirror: true
# }
data_param {
source: "/home/dina/caffe/examples/mytask/ilsvrc12_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file:"/home/dina/caffe/examples/mytask/imagenet_mean.binaryproto"
}
# mean pixel / channel-wise mean instead ofmean image
# transform_param {
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# mirror: false
# }
data_param {
source: "/home/dina/caffe/examples/mytask/ilsvrc12_val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult:1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult:1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
solver.prototxt是网络参数的设置,内容如下:
net:"/home/dina/caffe/examples/mytask/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 1000
momentum: 0.9
weight_decay: 0.0005
snapshot: 500
snapshot_prefix:"models/bvlc_reference_caffenet/caffenet_train"
solver_mode: GPU
使用上面的配置训练,得到的结果准确率仅仅是0.2+,数据集的制作者迭代了12000次得到0.5的准确率
train_caffnet.sh是运行网络的命令,内容如下:
#!/usr/bin/env sh
./build/tools/caffe train \
--solver=./examples/mytask/solver.prototxt
好了,可以等待训练过程了,我们的训练图片是2000个训练图片,1000个验证图片,大约过了3-4个小时,就训练好了。
5、开始训练
运行下面的命令,开始训练(为了方便可以做成脚本)
./build/tools/caffe train
--solver=examples/my_simple_image/cifar/cifar10_quick_solver.prototxt
6、小技巧
网络的配置和训练其实有一些小技巧。
- 训练过程中,正确率时高时低是很正常的现象,但是总体上是要下降的
- 观察loss值的趋势,如果迭代几次以后一直在增大,最后变成nan,那就是发散了,需要考虑减小训练速率,或者是调整其他参数
- 数据不能太少,如果太少的话很容易发散
ps -A#查看所有进程,及caffe的代码
kill -9 代码#杀掉caffe
nvidia-sim -l
(NVIDIA System Management Interface)
./build/tools/caffe time --model=models/bvlc_reference_caffenet/train_val.prototxt
我的时间使用情况
Average Forward pass: 3490.86 ms.
Average Backward pass: 5666.73 ms.
Average Forward-Backward: 9157.66 ms.
Total Time: 457883 ms.
如果我们在训练途中就停电或者有了其他的情况,我们可以通过之前保存的状态恢复数据,使用的时候直接添加–snapshot参数即可,如:
./build/tools/caffe train --solver=models/bvlc_reference_caffenet/solver.prototxt --snapshot=models/bvlc_reference_caffenet/caffenet_train_iter_10000.solverstate
这时候运行会从snapshot开始继续运行,如从第600迭代时运行: