Caffe上用SSD训练和测试自己的数据

 

我的根目录$caffe_root为/home/gpu/ljy/caffe

   一、运行SSD示例代码

   1.到https://github.com/weiliu89/caffe.git下载caffe-ssd代码,是一个caffe文件夹

   2.参考已经配好的caffe目录下的makefile.config修改¥caffe_root下的makefile.config.

   3.在$caffe_root下打开命令行终端,输入以下命令

make -j8
make py
make test -j8
make runtest -j8
编译完成
4.下载VGG_ILSVRC_16_layers_fc_reduced.caffemodel预训练模型,放到$caffe_root/models/VGG下。(没有VGG文件夹就建一个)
  下载数据集VOCtest_06_Nov-2007.tar等三个压缩包放在$caffe_root/data下,并解压。
5.修改./data/VOC0712/create_list.sh里面的路径为自己的路径,修改./data/VOC0712/create_data.sh,本文如下图所示:(VOC0712文件夹可能没有,那就从网上下一个)
  

       Caffe上用SSD训练和测试自己的数据_第1张图片

 6.命令行切换到$caffe_root并执行上面两个脚本,直接命令行输入就是执行
 7.训练,命令行输入下面:
  python examples/ssd/ssd_pascal.py
 或者下载训练好的模型
 8.测试
A.python examples/ssd/score_ssd_pascal.py
这个要先改里面的gpu个数,输出是分数
B.python examples/ssd/plot_detections.py
输出是是视频的标注...
C. ./.build_release/examples/ssd/ssd_detect.bin models/VGGNet/VOC0712/SSD_300x300/deploy.prototxt models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel /home/gpu/ljy/caffe/data/ljy_test/TestData/pictures.txt
这是单张图片的测试,C++版本的,其中ctrl+h可以查看隐藏文件夹,最后那个pictures.txt是待测试文件夹的路径列表,如下图:
 

    Caffe上用SSD训练和测试自己的数据_第2张图片

      Caffe上用SSD训练和测试自己的数据_第3张图片

     测试结果如下:(暂时还不知道输出的都是什么东西,可能是类别、置信度和位置吧)

     Caffe上用SSD训练和测试自己的数据_第4张图片

    D 单张图片测试,python版本

    点开ssd_detect.ipynb,复制并保存为ssd_detect.py,然后修改里面的路径(包括$caffe_root和测试图片的路径),并在最后加上plt.show()

    然后命令行运行该代码即可

   二、训练并测试自己的数据

    1.生成训练和测试数据

     我们自己的数据基本是jpeg或者其他图片格式的,而caffe输入的一般是LMDB的数据,所以我们要进行转换。我们转换的方法是

     A.将图像用工具进行标注(工具这里先不介绍),得到txt标注文件

     B.将txt文件和图片转换成VOC格式(用脚本)

     C.将VOC格式转换为LMDB格式,利用SSD示例代码提供的转换脚本。

 (1) 在 $caffe_root/data/VOCdevkit目录下创建ljy_test目录,该目录中存放自己转换完成的VOC数据集;
 (2) $CAFFE_ROOT/examples目录下创建ljy_test目录;
 (3) $CAFFE_ROOT/data目录下创建ljy_test目录,同时将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt
这三个文件copy到ljy_test目录下,分别重命名为create_list_ljy_test.sh,create_data_ljy_test.sh, labelmap_ljy_test.prototxt
 (4) 对上面新生成的两个create文件进行修改,主要修改是将VOC0712相关的信息替换成ljy_test
 修改后的两个文件分别如下:
   
  然后修改labelmap_indoor.prototxt,将该文件中的类别修改成和自己的数据集相匹配,注意需要保留一个label 0 , background类别

      完成上面步骤的修改后,可以开始LMDB数据数据的制作,在$CAFFE_ROOT目录下分别运行:

  ./data/ljy_test/create_list_indoor.sh

  ./data/ljy_test/create_data_indoor.sh

  命令执行完毕后,可以在$CAFFE_ROOT/examples/ljy_test目录下查看转换完成的LMDB数据数据。

   2.训练

  A.将预训练好的模型放在$CAFFE_ROOT/models/VGGNet下(我们这里在运行SSD示例代码的4已经放过了,可以省略)

 B.将$caffe_root/examples/ssd/ssd_pascal.py拷贝到自己的文件夹$caffe_root/examples/ljy_test/下,并重命名为ssd_pascal_ljy.py

 C.修改ssd_pascal_ljy.py为自己的各个路径,其中要在$caffe_root/models/VGGNet/下建立ljy_test文件夹,修改如下:

 

   Caffe上用SSD训练和测试自己的数据_第5张图片

  

  

  D.执行训练代码。在$caffe_root下打开命令行,并输入

python examples/ljy_test/ssd_pascal_ljy.py
等待训练就可以了...
有可能遇到loss=nan的情况,这个待议,正常情况下是下面酱紫的:
 

  3.测试

  A.c++版本的测试

   跟上面ssd示例测试的差不多,改一下路径即可

  B.python版本的测试

  同最上面

  4.参考:http://blog.csdn.net/u014696921/article/details/53353896

              https://github.com/weiliu89/caffe.git

 

 

__________________________________

SSD框架训练自己的数据集

2016年11月26日 19:08:03 2014wzy 阅读数:22176更多

个人分类: SSD

 
 
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证。
本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括:
1 数据集的标注
2 数据集的转换
3 使用SSD如何训练
4 使用SSD如何测试
1 数据集的标注 
  数据的标注使用BBox-Label-Tool工具,该工具使用python实现,使用简单方便。修改后的工具支持多label的标签标注。
该工具生成的标签格式是:
object_number
className x1min y1min x1max y1max
classname x2min y2min x2max y2max
...
1.1 labelTool工具的使用说明
  BBox-Label-Tool工具实现较简单,原始的git版本使用起来有一些小问题,进行了简单的修改,修改后的版本

复制代码

#-------------------------------------------------------------------------------
# Name:        Object bounding box label tool
# Purpose:     Label object bboxes for ImageNet Detection data
# Author:      Qiushi
# Created:     06/06/2014

#
#-------------------------------------------------------------------------------
from __future__ import division
from Tkinter import *
import tkMessageBox
from PIL import Image, ImageTk
import os
import glob
import random

# colors for the bboxes
COLORS = ['red', 'blue', 'yellow', 'pink', 'cyan', 'green', 'black']
# image sizes for the examples
SIZE = 256, 256

classLabels=['mat', 'door', 'sofa', 'chair', 'table', 'bed', 'ashcan', 'shoe']

class LabelTool():
    def __init__(self, master):
        # set up the main frame
        self.parent = master
        self.parent.title("LabelTool")
        self.frame = Frame(self.parent)
        self.frame.pack(fill=BOTH, expand=1)
        self.parent.resizable(width = False, height = False)

        # initialize global state
        self.imageDir = ''
        self.imageList= []
        self.egDir = ''
        self.egList = []
        self.outDir = ''
        self.cur = 0
        self.total = 0
        self.category = 0
        self.imagename = ''
        self.labelfilename = ''
        self.tkimg = None

        # initialize mouse state
        self.STATE = {}
        self.STATE['click'] = 0
        self.STATE['x'], self.STATE['y'] = 0, 0

        # reference to bbox
        self.bboxIdList = []
        self.bboxId = None
        self.bboxList = []
        self.hl = None
        self.vl = None
        self.currentClass = ''

        # ----------------- GUI stuff ---------------------
        # dir entry & load
        self.label = Label(self.frame, text = "Image Dir:")
        self.label.grid(row = 0, column = 0, sticky = E)
        self.entry = Entry(self.frame)
        self.entry.grid(row = 0, column = 1, sticky = W+E)
        self.ldBtn = Button(self.frame, text = "Load", command = self.loadDir)
        self.ldBtn.grid(row = 0, column = 2, sticky = W+E)

        # main panel for labeling
        self.mainPanel = Canvas(self.frame, cursor='tcross')
        self.mainPanel.bind("", self.mouseClick)
        self.mainPanel.bind("", self.mouseMove)
        self.parent.bind("", self.cancelBBox)  # press  to cancel current bbox
        self.parent.bind("s", self.cancelBBox)
        self.parent.bind("a", self.prevImage) # press 'a' to go backforward
        self.parent.bind("d", self.nextImage) # press 'd' to go forward
        self.mainPanel.grid(row = 1, column = 1, rowspan = 4, sticky = W+N)

        # showing bbox info & delete bbox
        self.lb1 = Label(self.frame, text = 'Bounding boxes:')
        self.lb1.grid(row = 1, column = 2,  sticky = W+N)
        self.listbox = Listbox(self.frame, width = 22, height = 12)
        self.listbox.grid(row = 2, column = 2, sticky = N)
        self.btnDel = Button(self.frame, text = 'Delete', command = self.delBBox)
        self.btnDel.grid(row = 3, column = 2, sticky = W+E+N)
        self.btnClear = Button(self.frame, text = 'ClearAll', command = self.clearBBox)
        self.btnClear.grid(row = 4, column = 2, sticky = W+E+N)
        
        #select class type
        self.classPanel = Frame(self.frame)
        self.classPanel.grid(row = 5, column = 1, columnspan = 10, sticky = W+E)
        label = Label(self.classPanel, text = 'class:')
        label.grid(row = 5, column = 1,  sticky = W+N)
       
        self.classbox = Listbox(self.classPanel,  width = 4, height = 2)
        self.classbox.grid(row = 5,column = 2)
        for each in range(len(classLabels)):
            function = 'select' + classLabels[each]
            print classLabels[each]
            btnMat = Button(self.classPanel, text = classLabels[each], command = getattr(self, function))
            btnMat.grid(row = 5, column = each + 3)
        
        # control panel for image navigation
        self.ctrPanel = Frame(self.frame)
        self.ctrPanel.grid(row = 6, column = 1, columnspan = 2, sticky = W+E)
        self.prevBtn = Button(self.ctrPanel, text='<< Prev', width = 10, command = self.prevImage)
        self.prevBtn.pack(side = LEFT, padx = 5, pady = 3)
        self.nextBtn = Button(self.ctrPanel, text='Next >>', width = 10, command = self.nextImage)
        self.nextBtn.pack(side = LEFT, padx = 5, pady = 3)
        self.progLabel = Label(self.ctrPanel, text = "Progress:     /    ")
        self.progLabel.pack(side = LEFT, padx = 5)
        self.tmpLabel = Label(self.ctrPanel, text = "Go to Image No.")
        self.tmpLabel.pack(side = LEFT, padx = 5)
        self.idxEntry = Entry(self.ctrPanel, width = 5)
        self.idxEntry.pack(side = LEFT)
        self.goBtn = Button(self.ctrPanel, text = 'Go', command = self.gotoImage)
        self.goBtn.pack(side = LEFT)

        # example pannel for illustration
        self.egPanel = Frame(self.frame, border = 10)
        self.egPanel.grid(row = 1, column = 0, rowspan = 5, sticky = N)
        self.tmpLabel2 = Label(self.egPanel, text = "Examples:")
        self.tmpLabel2.pack(side = TOP, pady = 5)
        self.egLabels = []
        for i in range(3):
            self.egLabels.append(Label(self.egPanel))
            self.egLabels[-1].pack(side = TOP)

        # display mouse position
        self.disp = Label(self.ctrPanel, text='')
        self.disp.pack(side = RIGHT)

        self.frame.columnconfigure(1, weight = 1)
        self.frame.rowconfigure(10, weight = 1)

        # for debugging
##        self.setImage()
##        self.loadDir()

    def loadDir(self, dbg = False):
        if not dbg:
            s = self.entry.get()
            self.parent.focus()
            self.category = int(s)
        else:
            s = r'D:\workspace\python\labelGUI'
##        if not os.path.isdir(s):
##            tkMessageBox.showerror("Error!", message = "The specified dir doesn't exist!")
##            return
        # get image list
        self.imageDir = os.path.join(r'./Images', '%d' %(self.category))
        self.imageList = glob.glob(os.path.join(self.imageDir, '*.jpg'))
        if len(self.imageList) == 0:
            print 'No .JPEG images found in the specified dir!'
            return   

      # set up output dir
        self.outDir = os.path.join(r'./Labels', '%d' %(self.category))
        if not os.path.exists(self.outDir):
            os.mkdir(self.outDir)
        
        labeledPicList = glob.glob(os.path.join(self.outDir, '*.txt'))
        
        for label in labeledPicList:
            data = open(label, 'r')
            if '0\n' == data.read():
                data.close()
                continue
            data.close()
            picture = label.replace('Labels', 'Images').replace('.txt', '.jpg')
            if picture in self.imageList:
                self.imageList.remove(picture)
        # default to the 1st image in the collection
        self.cur = 1
        self.total = len(self.imageList)
        self.loadImage()
        print '%d images loaded from %s' %(self.total, s)

    def loadImage(self):
        # load image
        imagepath = self.imageList[self.cur - 1]
        self.img = Image.open(imagepath)
        self.imgSize = self.img.size
        self.tkimg = ImageTk.PhotoImage(self.img)
        self.mainPanel.config(width = max(self.tkimg.width(), 400), height = max(self.tkimg.height(), 400))
        self.mainPanel.create_image(0, 0, image = self.tkimg, anchor=NW)
        self.progLabel.config(text = "%04d/%04d" %(self.cur, self.total))

        # load labels
        self.clearBBox()
        self.imagename = os.path.split(imagepath)[-1].split('.')[0]
        labelname = self.imagename + '.txt'
        self.labelfilename = os.path.join(self.outDir, labelname)
        bbox_cnt = 0
        if os.path.exists(self.labelfilename):
            with open(self.labelfilename) as f:
                for (i, line) in enumerate(f):
                    if i == 0:
                        bbox_cnt = int(line.strip())
                        continue
                    tmp = [int(t.strip()) for t in line.split()]
##                    print tmp
                    self.bboxList.append(tuple(tmp))
                    tmpId = self.mainPanel.create_rectangle(tmp[0], tmp[1], \
                                                            tmp[2], tmp[3], \
                                                            width = 2, \
                                                            outline = COLORS[(len(self.bboxList)-1) % len(COLORS)])
                    self.bboxIdList.append(tmpId)
                    self.listbox.insert(END, '(%d, %d) -> (%d, %d)' %(tmp[0], tmp[1], tmp[2], tmp[3]))
                    self.listbox.itemconfig(len(self.bboxIdList) - 1, fg = COLORS[(len(self.bboxIdList) - 1) % len(COLORS)])

    def saveImage(self):
        with open(self.labelfilename, 'w') as f:
            f.write('%d\n' %len(self.bboxList))
            for bbox in self.bboxList:
                f.write(' '.join(map(str, bbox)) + '\n')
        print 'Image No. %d saved' %(self.cur)


    def mouseClick(self, event):
        if self.STATE['click'] == 0:
            self.STATE['x'], self.STATE['y'] = event.x, event.y
            #self.STATE['x'], self.STATE['y'] = self.imgSize[0], self.imgSize[1]
        else:
            x1, x2 = min(self.STATE['x'], event.x), max(self.STATE['x'], event.x)
            y1, y2 = min(self.STATE['y'], event.y), max(self.STATE['y'], event.y)
            if x2 > self.imgSize[0]:
                x2 = self.imgSize[0]
            if y2 > self.imgSize[1]:
                y2 = self.imgSize[1]                
            self.bboxList.append((self.currentClass, x1, y1, x2, y2))
            self.bboxIdList.append(self.bboxId)
            self.bboxId = None
            self.listbox.insert(END, '(%d, %d) -> (%d, %d)' %(x1, y1, x2, y2))
            self.listbox.itemconfig(len(self.bboxIdList) - 1, fg = COLORS[(len(self.bboxIdList) - 1) % len(COLORS)])
        self.STATE['click'] = 1 - self.STATE['click']

    def mouseMove(self, event):
        self.disp.config(text = 'x: %d, y: %d' %(event.x, event.y))
        if self.tkimg:
            if self.hl:
                self.mainPanel.delete(self.hl)
            self.hl = self.mainPanel.create_line(0, event.y, self.tkimg.width(), event.y, width = 2)
            if self.vl:
                self.mainPanel.delete(self.vl)
            self.vl = self.mainPanel.create_line(event.x, 0, event.x, self.tkimg.height(), width = 2)
        if 1 == self.STATE['click']:
            if self.bboxId:
                self.mainPanel.delete(self.bboxId)
            self.bboxId = self.mainPanel.create_rectangle(self.STATE['x'], self.STATE['y'], \
                                                            event.x, event.y, \
                                                            width = 2, \
                                                            outline = COLORS[len(self.bboxList) % len(COLORS)])

    def cancelBBox(self, event):
        if 1 == self.STATE['click']:
            if self.bboxId:
                self.mainPanel.delete(self.bboxId)
                self.bboxId = None
                self.STATE['click'] = 0

    def delBBox(self):
        sel = self.listbox.curselection()
        if len(sel) != 1 :
            return
        idx = int(sel[0])
        self.mainPanel.delete(self.bboxIdList[idx])
        self.bboxIdList.pop(idx)
        self.bboxList.pop(idx)
        self.listbox.delete(idx)

    def clearBBox(self):
        for idx in range(len(self.bboxIdList)):
            self.mainPanel.delete(self.bboxIdList[idx])
        self.listbox.delete(0, len(self.bboxList))
        self.bboxIdList = []
        self.bboxList = []
        
    def selectmat(self):
        self.currentClass = 'mat'
        self.classbox.delete(0,END)
        self.classbox.insert(0, 'mat')
        self.classbox.itemconfig(0,fg = COLORS[0])
    
    def selectdoor(self):
        self.currentClass = 'door'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'door')
        self.classbox.itemconfig(0,fg = COLORS[0])
    
    def selectsofa(self):
        self.currentClass = 'sofa'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'sofa')
        self.classbox.itemconfig(0,fg = COLORS[0])
        
    def selectchair(self):
        self.currentClass = 'chair'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'chair')
        self.classbox.itemconfig(0,fg = COLORS[0])
        
    def selecttable(self):
        self.currentClass = 'table'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'table')
        self.classbox.itemconfig(0,fg = COLORS[0])
        
    def selectbed(self):
        self.currentClass = 'bed'
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'bed')
        self.classbox.itemconfig(0,fg = COLORS[0])
        
    def selectashcan(self):
        self.currentClass = 'ashcan'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'ashcan')
        self.classbox.itemconfig(0,fg = COLORS[0])
        
    def selectshoe(self):
        self.currentClass = 'shoe'    
        self.classbox.delete(0,END)    
        self.classbox.insert(0, 'shoe')
        self.classbox.itemconfig(0,fg = COLORS[0])    

    def prevImage(self, event = None):
        self.saveImage()
        if self.cur > 1:
            self.cur -= 1
            self.loadImage()

    def nextImage(self, event = None):
        self.saveImage()
        if self.cur < self.total:
            self.cur += 1
            self.loadImage()

    def gotoImage(self):
        idx = int(self.idxEntry.get())
        if 1 <= idx and idx <= self.total:
            self.saveImage()
            self.cur = idx
            self.loadImage()

##    def setImage(self, imagepath = r'test2.png'):
##        self.img = Image.open(imagepath)
##        self.tkimg = ImageTk.PhotoImage(self.img)
##        self.mainPanel.config(width = self.tkimg.width())
##        self.mainPanel.config(height = self.tkimg.height())
##        self.mainPanel.create_image(0, 0, image = self.tkimg, anchor=NW)

if __name__ == '__main__':
    root = Tk()
    tool = LabelTool(root)
    root.mainloop()

复制代码

 

  使用方法:   

     (1) 在BBox-Label-Tool/Images目录下创建保存图片的目录, 目录以数字命名(BBox-Label-Tool/Images/1), 然后将待标注的图片copy到1这个目录下;

     (2) 在BBox-Label-Tool目录下执行命令   python main.py

     (3) 在工具界面上, Image Dir 框中输入需要标记的目录名(比如 1), 然后点击load按钮, 工具自动将Images/1目录下的图片加载进来;

      需要说明一下, 如果目录中的图片已经标注过,点击load时不会被重新加载进来.

     (4) 该工具支持多类别标注, 画bounding boxs框标定之前,需要先选定类别,然后再画框.

     (5) 一张图片标注完后, 点击Next>>按钮, 标注下一张图片,  图片label成功后,会在BBox-Label-Tool/Labels对应的目录下生成与图片文件名对应的label文件.

2 数据集的转换

  caffe训练使用LMDB格式的数据,ssd框架中提供了voc数据格式转换成LMDB格式的脚本。
所以实践中先将BBox-Label-Tool标注的数据转换成voc数据格式,然后再转换成LMDB格式。

2.1 voc数据格式

 

 

(1)Annotations中保存的是xml格式的label信息

复制代码



    VOC2007
    1.jpg
    
        My Database
        VOC2007
        flickr
        NULL
    
    
        NULL
        idaneel
    
    
        320
        240
        3
    
    0
    
        door
        Unspecified
        0
        0
        
            109
            3
            199
            204
        
    

复制代码

 

Caffe上用SSD训练和测试自己的数据_第6张图片

(2)ImageSet目录下的Main目录里存放的是用于表示训练的图片集和测试的图片集

Caffe上用SSD训练和测试自己的数据_第7张图片

(3)JPEGImages目录下存放所有图片集

Caffe上用SSD训练和测试自己的数据_第8张图片

(4)label目录下保存的是BBox-Label-Tool工具标注好的bounding box坐标文件,
该目录下的文件就是待转换的label标签文件。
 
  
2.2 Label转换成VOC数据格式
BBox-Label-Tool工具标注好的bounding box坐标文件转换成VOC数据格式的形式.
具体的转换过程包括了两个步骤:
(1)将BBox-Label-Tool下的txt格式保存的bounding box信息转换成VOC数据格式下以xml方式表示;
(2)生成用于训练的数据集和用于测试的数据集。
用python实现了上述两个步骤的换转。
createXml.py  完成txt到xml的转换;  执行脚本./createXml.py

复制代码

#!/usr/bin/env python

import os
import sys
import cv2
from itertools import islice
from xml.dom.minidom import Document

labels='label'
imgpath='JPEGImages/'
xmlpath_new='Annotations/'
foldername='VOC2007'


def insertObject(doc, datas):
    obj = doc.createElement('object')
    name = doc.createElement('name')
    name.appendChild(doc.createTextNode(datas[0]))
    obj.appendChild(name)
    pose = doc.createElement('pose')
    pose.appendChild(doc.createTextNode('Unspecified'))
    obj.appendChild(pose)
    truncated = doc.createElement('truncated')
    truncated.appendChild(doc.createTextNode(str(0)))
    obj.appendChild(truncated)
    difficult = doc.createElement('difficult')
    difficult.appendChild(doc.createTextNode(str(0)))
    obj.appendChild(difficult)
    bndbox = doc.createElement('bndbox')
    
    xmin = doc.createElement('xmin')
    xmin.appendChild(doc.createTextNode(str(datas[1])))
    bndbox.appendChild(xmin)
    
    ymin = doc.createElement('ymin')                
    ymin.appendChild(doc.createTextNode(str(datas[2])))
    bndbox.appendChild(ymin)                
    xmax = doc.createElement('xmax')                
    xmax.appendChild(doc.createTextNode(str(datas[3])))
    bndbox.appendChild(xmax)                
    ymax = doc.createElement('ymax')    
    if  '\r' == str(datas[4])[-1] or '\n' == str(datas[4])[-1]:
        data = str(datas[4])[0:-1]
    else:
        data = str(datas[4])
    ymax.appendChild(doc.createTextNode(data))
    bndbox.appendChild(ymax)
    obj.appendChild(bndbox)                
    return obj

def create():
    for walk in os.walk(labels):
        for each in walk[2]:
            fidin=open(walk[0] + '/'+ each,'r')
            objIndex = 0
            for data in islice(fidin, 1, None):        
                objIndex += 1
                data=data.strip('\n')
                datas = data.split(' ')
                if 5 != len(datas):
                    print 'bounding box information error'
                    continue
                pictureName = each.replace('.txt', '.jpg')
                imageFile = imgpath + pictureName
                img = cv2.imread(imageFile)
                imgSize = img.shape
                if 1 == objIndex:
                    xmlName = each.replace('.txt', '.xml')
                    f = open(xmlpath_new + xmlName, "w")
                    doc = Document()
                    annotation = doc.createElement('annotation')
                    doc.appendChild(annotation)
                    
                    folder = doc.createElement('folder')
                    folder.appendChild(doc.createTextNode(foldername))
                    annotation.appendChild(folder)
                    
                    filename = doc.createElement('filename')
                    filename.appendChild(doc.createTextNode(pictureName))
                    annotation.appendChild(filename)
                    
                    source = doc.createElement('source')                
                    database = doc.createElement('database')
                    database.appendChild(doc.createTextNode('My Database'))
                    source.appendChild(database)
                    source_annotation = doc.createElement('annotation')
                    source_annotation.appendChild(doc.createTextNode(foldername))
                    source.appendChild(source_annotation)
                    image = doc.createElement('image')
                    image.appendChild(doc.createTextNode('flickr'))
                    source.appendChild(image)
                    flickrid = doc.createElement('flickrid')
                    flickrid.appendChild(doc.createTextNode('NULL'))
                    source.appendChild(flickrid)
                    annotation.appendChild(source)
                    
                    owner = doc.createElement('owner')
                    flickrid = doc.createElement('flickrid')
                    flickrid.appendChild(doc.createTextNode('NULL'))
                    owner.appendChild(flickrid)
                    name = doc.createElement('name')
                    name.appendChild(doc.createTextNode('idaneel'))
                    owner.appendChild(name)
                    annotation.appendChild(owner)
                    
                    size = doc.createElement('size')
                    width = doc.createElement('width')
                    width.appendChild(doc.createTextNode(str(imgSize[1])))
                    size.appendChild(width)
                    height = doc.createElement('height')
                    height.appendChild(doc.createTextNode(str(imgSize[0])))
                    size.appendChild(height)
                    depth = doc.createElement('depth')
                    depth.appendChild(doc.createTextNode(str(imgSize[2])))
                    size.appendChild(depth)
                    annotation.appendChild(size)
                    
                    segmented = doc.createElement('segmented')
                    segmented.appendChild(doc.createTextNode(str(0)))
                    annotation.appendChild(segmented)            
                    annotation.appendChild(insertObject(doc, datas))
                else:
                    annotation.appendChild(insertObject(doc, datas))
            try:
                f.write(doc.toprettyxml(indent = '    '))
                f.close()
                fidin.close()
            except:
                pass
   
          
if __name__ == '__main__':
    create()

复制代码

  createTest.py 生成训练集和测试集标识文件; 执行脚本

  ./createTest.py %startID% %endID% %testNumber%

 

复制代码

#!/usr/bin/env python
import os
import sys
import random
try:
    start = int(sys.argv[1])
    end = int(sys.argv[2])
    test = int(sys.argv[3])
    allNum = end-start+1
except:
    print 'Please input picture range'
    print './createTest.py 1 1500 500'
    os._exit(0)
b_list = range(start,end)
blist_webId = random.sample(b_list, test)
blist_webId = sorted(blist_webId) 
allFile = []
testFile = open('ImageSets/Main/test.txt', 'w')
trainFile = open('ImageSets/Main/trainval.txt', 'w')
for i in range(allNum):
    allFile.append(i+1)
for test in blist_webId:
    allFile.remove(test)
    testFile.write(str(test) + '\n')   
for train in allFile:
    trainFile.write(str(train) + '\n')
testFile.close()
trainFile.close()

复制代码

 

说明: 由于BBox-Label-Tool实现相对简单,该工具每次只能对一个类别进行打标签,所以转换脚本

每一次也是对一个类别进行数据的转换,这个问题后续需要优化改进。

优化后的BBox-Label-Tool工具,支持多类别标定,生成的label文件中增加了类别名称信息。

使用时修改classLabels,改写成自己的类别, 修改后的工具代码参见1.1中的main.py 

2.3  VOC数据转换成LMDB数据

  SSD提供了VOC数据到LMDB数据的转换脚本 data/VOC0712/create_list.sh 和 ./data/VOC0712/create_data.sh,这两个脚本是完全针对VOC0712目录下的数据进行的转换。
  实现中为了不破坏VOC0712目录下的数据内容,针对我们自己的数据集,修改了上面这两个脚本,
将脚本中涉及到VOC0712的信息替换成我们自己的目录信息。
在处理我们的数据集时,将VOC0712替换成indoor。
具体的步骤如下:
  (1) 在 $HOME/data/VOCdevkit目录下创建indoor目录,该目录中存放自己转换完成的VOC数据集;
  (2) $CAFFE_ROOT/examples目录下创建indoor目录;
        (3) $CAFFE_ROOT/data目录下创建indoor目录,同时将data/VOC0712下的create_list.sh,create_data.sh,labelmap_voc.prototxt
这三个文件copy到indoor目录下,分别重命名为create_list_indoor.sh,create_data_indoor.sh, labelmap_indoor.prototxt
  (4)对上面新生成的两个create文件进行修改,主要修改是将VOC0712相关的信息替换成indoor
  修改后的这两个文件分别为:  

复制代码

#!/bin/bash

root_dir=$HOME/data/VOCdevkit/
sub_dir=ImageSets/Main
bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

for dataset in trainval test    
do
  dst_file=$bash_dir/$dataset.txt
  if [ -f $dst_file ]
  then
    rm -f $dst_file
  fi
  for name in indoor
  do
    if [[ $dataset == "test" && $name == "VOC2012" ]]
    then
      continue
    fi
    echo "Create list for $name $dataset..."
    dataset_file=$root_dir/$name/$sub_dir/$dataset.txt

    img_file=$bash_dir/$dataset"_img.txt"
    cp $dataset_file $img_file
    sed -i "s/^/$name\/JPEGImages\//g" $img_file
    sed -i "s/$/.jpg/g" $img_file

    label_file=$bash_dir/$dataset"_label.txt"
    cp $dataset_file $label_file
    sed -i "s/^/$name\/Annotations\//g" $label_file
    sed -i "s/$/.xml/g" $label_file

    paste -d' ' $img_file $label_file >> $dst_file

    rm -f $label_file
    rm -f $img_file
  done
  # Generate image name and size infomation.
  if [ $dataset == "test" ]
  then
    $bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt"
  fi

  # Shuffle trainval file.
  if [ $dataset == "trainval" ]
  then
    rand_file=$dst_file.random
    cat $dst_file | perl -MList::Util=shuffle -e 'print shuffle();' > $rand_file
    mv $rand_file $dst_file
  fi
done

复制代码

 

复制代码

cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd )
root_dir=$cur_dir/../..

cd $root_dir

redo=1
data_root_dir="$HOME/data/VOCdevkit"
dataset_name="indoor"
mapfile="$root_dir/data/$dataset_name/labelmap_indoor.prototxt"
anno_type="detection"
db="lmdb"
min_dim=0
max_dim=0
width=0
height=0

extra_cmd="--encode-type=jpg --encoded"
if [ $redo ]
then
  extra_cmd="$extra_cmd --redo"
fi
for subset in test trainval
do
  python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name
done

复制代码

        (5)修改labelmap_indoor.prototxt,将该文件中的类别修改成和自己的数据集相匹配,注意需要保留一个label 0 , background类别

复制代码

item {
  name: "none_of_the_above"
  label: 0
  display_name: "background"
}
item {
  name: "door"
  label: 1
  display_name: "door"
}

复制代码

 

  完成上面步骤的修改后,可以开始LMDB数据数据的制作,在$CAFFE_ROOT目录下分别运行:

  ./data/indoor/create_list_indoor.sh

  ./data/indoor/create_data_indoor.sh

  命令执行完毕后,可以在$CAFFE_ROOT/indoor目录下查看转换完成的LMDB数据数据。

3 使用SSD进行自己数据集的训练

训练时使用ssd demo中提供的预训练好的VGGnet model : VGG_ILSVRC_16_layers_fc_reduced.caffemodel
将该模型保存到$CAFFE_ROOT/models/VGGNet下。
将ssd_pascal.py copy一份 ssd_pascal_indoor.py文件, 根据自己的数据集修改ssd_pascal_indoor.py
主要修改点:
 (1)train_data和test_data修改成指向自己的数据集LMDB
   train_data = "examples/indoor/indoor_trainval_lmdb"
            test_data = "examples/indoor/indoor_test_lmdb"
(2) num_test_image该变量修改成自己数据集中测试数据的数量
(3)num_classes 该变量修改成自己数据集中 标签类别数量数 + 1

针对我的数据集,ssd_pascal_indoor.py的内容为:

复制代码

from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_format

import math
import os
import shutil
import stat
import subprocess
import sys

# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
def AddExtraLayers(net, use_batchnorm=True):
    use_relu = True

    # Add additional convolutional layers.
    from_layer = net.keys()[-1]
    # TODO(weiliu89): Construct the name using the last layer to avoid duplication.
    out_layer = "conv6_1"
    ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 1, 0, 1)

    from_layer = out_layer
    out_layer = "conv6_2"
    ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 512, 3, 1, 2)

    for i in xrange(7, 9):
      from_layer = out_layer
      out_layer = "conv{}_1".format(i)
      ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 1, 0, 1)

      from_layer = out_layer
      out_layer = "conv{}_2".format(i)
      ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2)

    # Add global pooling layer.
    name = net.keys()[-1]
    net.pool6 = L.Pooling(net[name], pool=P.Pooling.AVE, global_pooling=True)

    return net


### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
caffe_root = os.getcwd()

# Set true if you want to start training right after generating all files.
run_soon = True
# Set true if you want to load from most recently saved snapshot.
# Otherwise, we will load from the pretrain_model defined below.
resume_training = True
# If true, Remove old model files.
remove_old_models = False

# The database file for training data. Created by data/VOC0712/create_data.sh
train_data = "examples/indoor/indoor_trainval_lmdb"
# The database file for testing data. Created by data/VOC0712/create_data.sh
test_data = "examples/indoor/indoor_test_lmdb"
# Specify the batch sampler.
resize_width = 300
resize_height = 300
resize = "{}x{}".format(resize_width, resize_height)
batch_sampler = [
        {
                'sampler': {
                        },
                'max_trials': 1,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'min_jaccard_overlap': 0.1,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'min_jaccard_overlap': 0.3,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'min_jaccard_overlap': 0.5,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'min_jaccard_overlap': 0.7,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'min_jaccard_overlap': 0.9,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        {
                'sampler': {
                        'min_scale': 0.3,
                        'max_scale': 1.0,
                        'min_aspect_ratio': 0.5,
                        'max_aspect_ratio': 2.0,
                        },
                'sample_constraint': {
                        'max_jaccard_overlap': 1.0,
                        },
                'max_trials': 50,
                'max_sample': 1,
        },
        ]
train_transform_param = {
        'mirror': True,
        'mean_value': [104, 117, 123],
        'resize_param': {
                'prob': 1,
                'resize_mode': P.Resize.WARP,
                'height': resize_height,
                'width': resize_width,
                'interp_mode': [
                        P.Resize.LINEAR,
                        P.Resize.AREA,
                        P.Resize.NEAREST,
                        P.Resize.CUBIC,
                        P.Resize.LANCZOS4,
                        ],
                },
        'emit_constraint': {
            'emit_type': caffe_pb2.EmitConstraint.CENTER,
            }
        }
test_transform_param = {
        'mean_value': [104, 117, 123],
        'resize_param': {
                'prob': 1,
                'resize_mode': P.Resize.WARP,
                'height': resize_height,
                'width': resize_width,
                'interp_mode': [P.Resize.LINEAR],
                },
        }

# If true, use batch norm for all newly added layers.
# Currently only the non batch norm version has been tested.
use_batchnorm = False
# Use different initial learning rate.
if use_batchnorm:
    base_lr = 0.0004
else:
    # A learning rate for batch_size = 1, num_gpus = 1.
    base_lr = 0.00004

# Modify the job name if you want.
job_name = "SSD_{}".format(resize)
# The name of the model. Modify it if you want.
model_name = "VGG_VOC0712_{}".format(job_name)

# Directory which stores the model .prototxt file.
save_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the snapshot of models.
snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the job script and log file.
job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the detection results.
output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ['HOME'], job_name)

# model definition files.
train_net_file = "{}/train.prototxt".format(save_dir)
test_net_file = "{}/test.prototxt".format(save_dir)
deploy_net_file = "{}/deploy.prototxt".format(save_dir)
solver_file = "{}/solver.prototxt".format(save_dir)
# snapshot prefix.
snapshot_prefix = "{}/{}".format(snapshot_dir, model_name)
# job script path.
job_file = "{}/{}.sh".format(job_dir, model_name)

# Stores the test image names and sizes. Created by data/VOC0712/create_list.sh
name_size_file = "data/indoor/test_name_size.txt"
# The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet.
pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel"
# Stores LabelMapItem.
label_map_file = "data/indoor/labelmap_indoor.prototxt"

# MultiBoxLoss parameters.
num_classes = 2
share_location = True
background_label_id=0
train_on_diff_gt = True
normalization_mode = P.Loss.VALID
code_type = P.PriorBox.CENTER_SIZE
neg_pos_ratio = 3.
loc_weight = (neg_pos_ratio + 1.) / 4.
multibox_loss_param = {
    'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1,
    'conf_loss_type': P.MultiBoxLoss.SOFTMAX,
    'loc_weight': loc_weight,
    'num_classes': num_classes,
    'share_location': share_location,
    'match_type': P.MultiBoxLoss.PER_PREDICTION,
    'overlap_threshold': 0.5,
    'use_prior_for_matching': True,
    'background_label_id': background_label_id,
    'use_difficult_gt': train_on_diff_gt,
    'do_neg_mining': True,
    'neg_pos_ratio': neg_pos_ratio,
    'neg_overlap': 0.5,
    'code_type': code_type,
    }
loss_param = {
    'normalization': normalization_mode,
    }

# parameters for generating priors.
# minimum dimension of input image
min_dim = 300
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# pool6 ==> 1 x 1
mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'pool6']
# in percent %
min_ratio = 20
max_ratio = 95
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))
min_sizes = []
max_sizes = []
for ratio in xrange(min_ratio, max_ratio + 1, step):
  min_sizes.append(min_dim * ratio / 100.)
  max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes
max_sizes = [[]] + max_sizes
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]]
# L2 normalize conv4_3.
normalizations = [20, -1, -1, -1, -1, -1]
# variance used to encode/decode prior bboxes.
if code_type == P.PriorBox.CENTER_SIZE:
  prior_variance = [0.1, 0.1, 0.2, 0.2]
else:
  prior_variance = [0.1]
flip = True
clip = True

# Solver parameters.
# Defining which GPUs to use.
gpus = "0"
gpulist = gpus.split(",")
num_gpus = len(gpulist)

# Divide the mini-batch to different GPUs.
batch_size = 4
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
solver_mode = P.Solver.CPU
device_id = 0
batch_size_per_device = batch_size
if num_gpus > 0:
  batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus))
  iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus)))
  solver_mode = P.Solver.GPU
  device_id = int(gpulist[0])

if normalization_mode == P.Loss.NONE:
  base_lr /= batch_size_per_device
elif normalization_mode == P.Loss.VALID:
  base_lr *= 25. / loc_weight
elif normalization_mode == P.Loss.FULL:
  # Roughly there are 2000 prior bboxes per image.
  # TODO(weiliu89): Estimate the exact # of priors.
  base_lr *= 2000.

# Which layers to freeze (no backward) during training.
freeze_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2']

# Evaluate on whole test set.
num_test_image = 800
test_batch_size = 1
test_iter = num_test_image / test_batch_size

solver_param = {
    # Train parameters
    'base_lr': base_lr,
    'weight_decay': 0.0005,
    'lr_policy': "step",
    'stepsize': 40000,
    'gamma': 0.1,
    'momentum': 0.9,
    'iter_size': iter_size,
    'max_iter': 60000,
    'snapshot': 40000,
    'display': 10,
    'average_loss': 10,
    'type': "SGD",
    'solver_mode': solver_mode,
    'device_id': device_id,
    'debug_info': False,
    'snapshot_after_train': True,
    # Test parameters
    'test_iter': [test_iter],
    'test_interval': 10000,
    'eval_type': "detection",
    'ap_version': "11point",
    'test_initialization': False,
    }

# parameters for generating detection output.
det_out_param = {
    'num_classes': num_classes,
    'share_location': share_location,
    'background_label_id': background_label_id,
    'nms_param': {'nms_threshold': 0.45, 'top_k': 400},
    'save_output_param': {
        'output_directory': output_result_dir,
        'output_name_prefix': "comp4_det_test_",
        'output_format': "VOC",
        'label_map_file': label_map_file,
        'name_size_file': name_size_file,
        'num_test_image': num_test_image,
        },
    'keep_top_k': 200,
    'confidence_threshold': 0.01,
    'code_type': code_type,
    }

# parameters for evaluating detection results.
det_eval_param = {
    'num_classes': num_classes,
    'background_label_id': background_label_id,
    'overlap_threshold': 0.5,
    'evaluate_difficult_gt': False,
    'name_size_file': name_size_file,
    }

### Hopefully you don't need to change the following ###
# Check file.
check_if_exist(train_data)
check_if_exist(test_data)
check_if_exist(label_map_file)
check_if_exist(pretrain_model)
make_if_not_exist(save_dir)
make_if_not_exist(job_dir)
make_if_not_exist(snapshot_dir)

# Create train net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device,
        train=True, output_label=True, label_map_file=label_map_file,
        transform_param=train_transform_param, batch_sampler=batch_sampler)

VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
    dropout=False, freeze_layers=freeze_layers)

AddExtraLayers(net, use_batchnorm)

mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
        use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
        aspect_ratios=aspect_ratios, normalizations=normalizations,
        num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
        prior_variance=prior_variance, kernel_size=3, pad=1)

# Create the MultiBoxLossLayer.
name = "mbox_loss"
mbox_layers.append(net.label)
net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param,
        loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')),
        propagate_down=[True, True, False, False])

with open(train_net_file, 'w') as f:
    print('name: "{}_train"'.format(model_name), file=f)
    print(net.to_proto(), file=f)
shutil.copy(train_net_file, job_dir)

# Create test net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size,
        train=False, output_label=True, label_map_file=label_map_file,
        transform_param=test_transform_param)

VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
    dropout=False, freeze_layers=freeze_layers)

AddExtraLayers(net, use_batchnorm)

mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
        use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
        aspect_ratios=aspect_ratios, normalizations=normalizations,
        num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
        prior_variance=prior_variance, kernel_size=3, pad=1)

conf_name = "mbox_conf"
if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX:
  reshape_name = "{}_reshape".format(conf_name)
  net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes]))
  softmax_name = "{}_softmax".format(conf_name)
  net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
  flatten_name = "{}_flatten".format(conf_name)
  net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
  mbox_layers[1] = net[flatten_name]
elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC:
  sigmoid_name = "{}_sigmoid".format(conf_name)
  net[sigmoid_name] = L.Sigmoid(net[conf_name])
  mbox_layers[1] = net[sigmoid_name]

net.detection_out = L.DetectionOutput(*mbox_layers,
    detection_output_param=det_out_param,
    include=dict(phase=caffe_pb2.Phase.Value('TEST')))
net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label,
    detection_evaluate_param=det_eval_param,
    include=dict(phase=caffe_pb2.Phase.Value('TEST')))

with open(test_net_file, 'w') as f:
    print('name: "{}_test"'.format(model_name), file=f)
    print(net.to_proto(), file=f)
shutil.copy(test_net_file, job_dir)

# Create deploy net.
# Remove the first and last layer from test net.
deploy_net = net
with open(deploy_net_file, 'w') as f:
    net_param = deploy_net.to_proto()
    # Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net.
    del net_param.layer[0]
    del net_param.layer[-1]
    net_param.name = '{}_deploy'.format(model_name)
    net_param.input.extend(['data'])
    net_param.input_shape.extend([
        caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])])
    print(net_param, file=f)
shutil.copy(deploy_net_file, job_dir)

# Create solver.
solver = caffe_pb2.SolverParameter(
        train_net=train_net_file,
        test_net=[test_net_file],
        snapshot_prefix=snapshot_prefix,
        **solver_param)

with open(solver_file, 'w') as f:
    print(solver, file=f)
shutil.copy(solver_file, job_dir)

max_iter = 0
# Find most recent snapshot.
for file in os.listdir(snapshot_dir):
  if file.endswith(".solverstate"):
    basename = os.path.splitext(file)[0]
    iter = int(basename.split("{}_iter_".format(model_name))[1])
    if iter > max_iter:
      max_iter = iter

train_src_param = '--weights="{}" \\\n'.format(pretrain_model)
if resume_training:
  if max_iter > 0:
    train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter)

if remove_old_models:
  # Remove any snapshots smaller than max_iter.
  for file in os.listdir(snapshot_dir):
    if file.endswith(".solverstate"):
      basename = os.path.splitext(file)[0]
      iter = int(basename.split("{}_iter_".format(model_name))[1])
      if max_iter > iter:
        os.remove("{}/{}".format(snapshot_dir, file))
    if file.endswith(".caffemodel"):
      basename = os.path.splitext(file)[0]
      iter = int(basename.split("{}_iter_".format(model_name))[1])
      if max_iter > iter:
        os.remove("{}/{}".format(snapshot_dir, file))

# Create job file.
with open(job_file, 'w') as f:
  f.write('cd {}\n'.format(caffe_root))
  f.write('./build/tools/caffe train \\\n')
  f.write('--solver="{}" \\\n'.format(solver_file))
  f.write(train_src_param)
  if solver_param['solver_mode'] == P.Solver.GPU:
    f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name))
  else:
    f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name))

# Copy the python script to job_dir.
py_file = os.path.abspath(__file__)
shutil.copy(py_file, job_dir)

# Run the job.
os.chmod(job_file, stat.S_IRWXU)
if run_soon:
  subprocess.call(job_file, shell=True)

复制代码

训练命令:
python examples/ssd/ssd_pascal_indoor.py

4 测试

SSD框架中提供了测试代码,有C++版本和python版本

 4.1 c++版本

编译完SSD后,C++版本的的可执行文件存放目录: .build_release/examples/ssd/ssd_detect.bin

测试命令  ./.build_release/examples/ssd/ssd_detect.bin models/VGGNet/indoor/deploy.prototxt   models/VGGNet/indoor/VGG_VOC0712_SSD_300x300_iter_60000.caffemodel pictures.txt

其中pictures.txt中保存的是待测试图片的list

 4.2 python版本

    python 版本的测试过程参见examples/detection.ipynb

参考:
 1 Faster RCNN 训练自己的数据集(Matlab,python版本)及制作VOC2007格式数据集
  2 SSD的配置及运行

https://blog.csdn.net/u014696921/article/details/53353896

接下来将SSD应用在检测飞机的上面:

见: /home/echo/vision/caffe/examples/airplaneDete

Create the trainval.txt, test.txt, and test_name_size.txt in /home/echo/vision/caffe/examples/airplaneDete/,这边我用MATLAB编写(相当于之前的creat_list.py),生成前面是图片路径,后面是xml文件路径的形式:

见main_jpgxml.m文件

运行

~/vision/caffe$ /home/echo/vision/caffe/examples/airplaneDete/create_data.sh

再创建:test_name_size.txt,代码请看: /home/echo/vision/caffe/examples/airplaneDete/create_list.sh:

训练:我本想基于作者训练好的检测网络去训练自己的库,但是不知咋地,有点问题。

Cannot copy param 0 weights from layer 'conv4_3_norm_mbox_conf'; shape mismatch. Source param shape is 84 512 3 3 (387072); target param shape is 8 512 3 3 (36864). To learn this layer's parameters from scratch rather than copying from a saved net, rename the layer.

解释:我估计微调并不能基于别人检测的全部网络,只能是前面分类的部分,因为由于检测类别数目等不的一样,检测网络可能不一样,YOLOv2的微调同样如此。

blog.csdn.net/u010167269/article/details/52851667这篇文章是利用VGG网络,自己训练的,看了几个都是这样自己训的,目前我也还是用的300*300的训练的。

修改ssd_pascal.py,运行:

python /home/echo/vision/caffe/examples/airplaneDete/ssd_pascal.py

修改的地方:

(1) 图片路径:

(2)初始的学习率(注意后面有公式把他改了,0.0004与0.00004对应的是0.001,我这样改了之后变成0.0005);

(3)这几个存储的路径save_dir存储生成的.prototxt文件,snapshot_dir存储模型中间snap状态:

job_dir中存储的整个项目过程需要的东西:

注意:job_dir与save_dir不要在一个路径下,不然生成的文件会冲突

(4)模型和mapfile

(5)batch_size:

(6) test:

(7)solver_param参数:stepvalue,max_iter,snapshot,display,test_interval之类,还可以改一些测试的时候的参数:confidence_threshold以及overlap_threshold

训练...等待...50000次,我训练了接近一天呀!!训练结果:

测试的精度是:detection_eval = 0.892142,比YOLOv2要好(我想可能是用了好几个多尺度的featureMap),但是!网络对于过小的目标,还是不行。起码YOLOv2还可以扩大输入图像的尺寸,结果会再好一点点。虽然也不知道最后结果能不能比SSD好。起码,现在没有它好。

SSD测试单张:

SSD 的作者也给我们写好了 predict 的代码,我们只需要该参数就可以了。用 jupyter notebook 打开 ~/caffe/examples/ssd_detect.ipynb文件,改一下各种路径以及文件就好。

注意:这种109*131指的是宽109,高131

大目标大部分都可以以100%的检测到,但是小目标几乎就检测不到了,这与之前wrap到300有直接的关系。而且我尝试直接把图像resize到3000比如,会报错,因为我的deploy.prototxt中写的是300,改deploy.prototxt成3000更会报错,一个模型训好之后,输入大小几乎就不能再变了。另外一个是500的,又是另外一个模型了。这个输入到底会在哪边有影响呢?

原因:我这边犯蠢了呀!输入各种大小,都会被resize到网络需要的大小,为啥网络一定要固定大小,是因为比如规定某一层的feature map用于回归框以及置信度,假设大小是m*m×p,则会用用卷积还是啥生成m*m*(框的位置+置信度数目),所以feature map的大小决定后面用多少个卷积啥的。好像这个解释不太对,对比VGG16与deploy.prototxt看一下:

VGG16前面所有的卷基层,池化之类的都一抹一眼的写在了deploy.prototxt里面,并且F6,F7改成卷基层,丢掉VGG16的dropout,后面加了conv4_3_norm层的对conv4_3层的输出进行Normalize,conv4_3_norm_mbox_loc这种就是对box的定位,没有置信度预测,后面单独预测置信度,巴拉巴拉...反正就是训好的模型对输入大小肯定有要求。

YOLOv2模型输入一开始也都是resize到416的,分类与检测是一样的大小,但是因为网络最后的预测只用到了卷积与池化操作,与输入大小无关,所以可以输入各种大小的图片预测。只是训练的时候,会改变网络输入大小,使得可以训练各个尺度的图片,288至600的输入都可以用一个权重相同的网络。这边如何与输入大小无关,我并不知道。试一下:果真,我把yolo-voc.cfg下面的height与width:

height=1000 #800 #600 #416 #288 #416
width=1000 #800 #600 # #288 #416

网络都可以运行,而且一般来说,对于700*800的原始图片,设置越大的尺寸,检测越好。

只是我还不明白为啥可以多尺度训练,以及为啥改成任何尺度都可以,也就是跟输入无关,看了yolo-voc.cfg最后用的是1*1的卷积去预测的,与图像大小无关。也就是说最后并非是划分成什么网格,而是就是按照feature map的大小,v1是划分成7*7的网格的。

SSD批量测试:这算是遗留的问题吧!

假设用SSD_500,怎样训练,我想是还是改上面ssd_pascal.py文件,直接改里面的resize_width = 300 和resize_height = 300,变成500吧,下面估计也要改成500(不确定):

# minimum dimension of input image
min_dim = 300



补充(看代码):

见:github.com/EchoIR/airplaneDetec/tree/SSD
1. create_list.sh:没有啥特别的,就是生成trainval.txt,test.txt以及test_name_size.txt
2. create_data.sh:就是去生成lmdb文件以及它的软连接。其中的min-dim,max-dim,resize-height,resize-width都设置成0,应该是说不对图像进行任何尺寸的伸缩或者尺寸有任何大小要求。
3. ssd_pascal.py:只看最基本的设置,主要不懂的地方是batch_sampler是what?我想是对正样本的选取?反正应该是样本如何选取的,也算是数据增强的吧

你可能感兴趣的:(计算机视觉,图像处理,计算机视觉,深度学习,算法学习)