Java Basic系列之(六):String

聊聊java中codepoint和UTF-16相关的一些事
维基百科

UTF-16

UTF-16是Unicode字符编码五层次模型的第三层:字符编码表(Character Encoding Form,也称为”storage format”)的一种实现方式。即把Unicode字符集的抽象码位映射为16位长的整数(即码元)的序列,用于数据存储或传递。Unicode字符的码位,需要1个或者2个16位长的码元来表示,因此这是一个变长表示。

UTF是”Unicode/UCS Transformation Format”的首字母缩写,即把Unicode字符转换为某种格式之意。UTF-16正式定义于ISO/IEC 10646-1的附录C,而RFC2781也定义了相似的做法。

Unicode的编码空间从U+0000到U+10FFFF,共有1,112,064个码位(code point)可用来映射字符. Unicode的编码空间可以划分为17个平面(plane),每个平面包含216(65,536)个码位。17个平面的码位可表示为从U+xx0000到U+xxFFFF,其中xx表示十六进制值从0016到1016,共计17个平面。第一个平面称为基本多语言平面(Basic Multilingual Plane, BMP),或称第零平面(Plane 0)。其他平面称为辅助平面(Supplementary Planes)。基本多语言平面内,从U+D800到U+DFFF之间的码位区块是永久保留不映射到Unicode字符。UTF-16就利用保留下来的0xD800-0xDFFF区块的码位来对辅助平面的字符的码位进行编码。

从U+0000至U+D7FF以及从U+E000至U+FFFF的码位

第一个Unicode平面(码位从U+0000至U+FFFF)包含了最常用的字符。该平面被称为基本多语言平面,缩写为BMP(Basic Multilingual Plane, BMP)。UTF-16与UCS-2编码这个范围内的码位为16比特长的单个码元,数值等价于对应的码位. BMP中的这些码位是仅有的可以在UCS-2中表示的码位。
辅助平面(Supplementary Planes)中的码位,在UTF-16中被编码为一对16比特长的码元(即32位,4字节),称作代理对(surrogate pair),具体方法是:

UTF-16解码

lead trail DC00 DC01 DFFF
D800 10000 10001 103FF
D801 10400 10401 107FF
DBFF 10FC00 10FC01 10FFFF

码位减去0x10000,得到的值的范围为20比特长的0..0xFFFFF.

高位的10比特的值(值的范围为0..0x3FF)被加上0xD800得到第一个码元或称作高位代理(high surrogate),值的范围是0xD800..0xDBFF.由于高位代理比低位代理的值要小,所以为了避免混淆使用,Unicode标准现在称高位代理为前导代理(lead surrogates)。

低位的10比特的值(值的范围也是0..0x3FF)被加上0xDC00得到第二个码元或称作低位代理(low surrogate),现在值的范围是0xDC00..0xDFFF.由于低位代理比高位代理的值要大,所以为了避免混淆使用,Unicode标准现在称低位代理为后尾代理(trail surrogates)。
上述算法可理解为:辅助平面中的码位从U+10000到U+10FFFF,共计FFFFF个,即220=1,048,576个,需要20位来表示。如果用两个16位长的整数组成的序列来表示,第一个整数(称为前导代理)要容纳上述20位的前10位,第二个整数(称为后尾代理)容纳上述20位的后10位。还要能根据16位整数的值直接判明属于前导整数代理的值的范围(210=1024),还是后尾整数代理的值的范围(也是210=1024)。因此,需要在基本多语言平面中保留不对应于Unicode字符的2048个码位,就足以容纳前导代理与后尾代理所需要的编码空间。这对于基本多语言平面总计65536个码位来说,仅占3.125%.

由于前导代理、后尾代理、BMP中的有效字符的码位,三者互不重叠,搜索是简单的:一个字符编码的一部分不可能与另一个字符编码的不同部分相重叠。这意味着UTF-16是自同步(self-synchronizing):可以通过仅检查一个码元就可以判定给定字符的下一个字符的起始码元.

从U+D800到U+DFFF的码位

Unicode标准规定U+D800..U+DFFF的值不对应于任何字符。

但是在使用UCS-2的时代,U+D800..U+DFFF内的值被占用,用于某些字符的映射。但只要不构成代理对,许多UTF-16编码解码还是能把这些不匹配Unicode标准的字符映射正确的辨识、转换成合规的码元[2].按照Unicode标准,这种码元序列本来应算作编码错误。

示例:

例如U+10437编码(��):

0x10437减去0x10000,结果为0x00437,二进制为0000 0000 0100 0011 0111。
分区它的上10位值和下10位值(使用二进制):0000000001 and 0000110111。
添加0xD800到上值,以形成高位:0xD800 + 0x0001 = 0xD801。
添加0xDC00到下值,以形成低位:0xDC00 + 0x0037 = 0xDC37。
下表总结了该转换,以及其它。颜色指示如何从码点位被分布在所述的UTF-16字节。由UTF-16编码过程中加入附加位以黑色显示。

字符 普通二进制 UTF-16二进制 UTF-16十六进制字符代码 UTF-16BE十六进制字节 UTF-16LE十六进制字节
$ U+0024 0000 0000 0010 0100 0000 0000 0010 0100 0024 00 24 24 00
U+20AC 0010 0000 1010 1100 0010 0000 1010 1100 20AC 20 AC
�� U+10437 0001 0000 0100 0011 0111 1101 1000 0000 0001 1101 1100 0011 0111 D801 DC37 D8 01 DC 37
�� U+24B62 0010 0100 1011 0110 0010 1101 1000 0101 0010 1101 1111 0110 0010 D852 DF62 D8 52 DF 62

UTF-16与UCS-2的关系

UTF-16可看成是UCS-2的父集。在没有辅助平面字符(surrogate code points)前,UTF-16与UCS-2所指的是同一的意思。但当引入辅助平面字符后,就称为UTF-16了。现在若有软件声称自己支持UCS-2编码,那其实是暗指它不能支持在UTF-16中超过2字节的字集。对于小于0x10000的UCS码,UTF-16编码就等于UCS码。
UTF-16比起UTF-8,好处在于大部分字符都以固定长度的字节(2字节)存储,但UTF-16却无法兼容于ASCII编码。

你可能感兴趣的:(Java)