scikit-learn中kNN模型的使用及源码解读

1.scikit-learn中的kNN模型

  scikit-learn中提供了一个KNeighborClassifier类来实现k近邻法分类模型,其原型为:
sklearn.neighbors.KNighborClassifier(n_neighbors=5,weights=’uniform’,algorithm=’auto’,leaf_size=30,p=2,metric=’minkowski’,metric_params=None,n_jobs=1,**kwargs)

参数   

  • n_neighbors:一个整数,指定k值。
  • weights:一字符串或者可调用对象,指定投票权重类型。也就是说这些邻居投票权可以为相同或不同:

    • ‘uniform’:本节点的所有邻居节点的投票权重都相等;
    • ‘distance’:本节点的所有邻居节点的投票权重与距离成反比,即越近的节点,其投票的权重越大;
    • [callable]:一个可调用对象。它传入距离的数组,返回同样形状的权重数组。
  • algorithm:一个字符串,指定计算最近邻的算法,可以为如下:

    • ’ball_tree’ :使用BallTree算法,也就是球树;
    • ‘kd_tree’: 使用KDTree算法;
    • ‘brute’ : 使用暴力搜素法;
    • ‘auto’ : 自动决定最适合的算法。
  • leaf_size:一个整数,指定BallTree或者KDTree叶节点的规模。它影响树的构建和查询速度。
  • metric:一个字符串,指定距离度量。默认为‘minkowski’距离。
  • p:整数值,指定在‘minkowski’距离上的指数。
  • n_jobs:并行性。默认为-1表示派发任务到所有计算机的CPU上。

方法
   

  • fit(X,y):训练模型
  • predict:使用模型来预测,返回待预测样本的标记。
  • score(X,y):返回在(X,y)上预测的准确率。
  • predict_proba(X):返回样本为每种标记的概率。
  • kneighbors([X,n_neighbors,return_distance]):返回样本点的k近邻点。如果return_diatance=True,同时还返回到这些近邻点的距离。
  • kneighbors_graph([X,n_neighbors,model]):返回样本点的连接图。

2.Python实践kNN

代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import neighbors,datasets,cross_validation

#加载分类数据
def load_data():
    digits = datasets.load_digits()
    return cross_validation.train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target)
#生成回归数据
def create_regression_data(n):
    X = 5*np.random.rand(n,1)
    y = np.sin(X).ravel()
    y[::5] += 1*(0.5 - np.random.rand(int(n/5)))
    return cross_validation.train_test_split(X,y,test_size=0.25,random_state=0)
#测试分类函数
def test_KNeighbors(*data):
    X_train,X_test,y_train,y_test = data
    clf = neighbors.KNeighborsClassifier()
    clf.fit(X_train,y_train)
    print 'Training Score:',clf.score(X_train,y_train)
    print 'Testing Scors:',clf.score(X_test,y_test)
X_train,X_test,y_train,y_test = load_data()
test_KNeighbors(X_train,X_test,y_train,y_test)
''' 
运行结果:
Training Score: 0.991091314031
Testing Scors: 0.98
'''

#测试k值and投票策略对结果的影响
def test_K_Weights(*data):
    X_train,X_test,y_train,y_test = data
    Ks = np.linspace(1,y_train.size,num=100,endpoint=False,dtype='int')
    weights = ['uniform','distance']
    fig = plt.figure()
    ax=fig.add_subplot(1,1,1)
    for weight in weights:
        training_scores=[]
        testing_scores=[]
        for K in Ks:
            clf = neighbors.KNeighborsClassifier(weights=weight,n_neighbors=K)
            clf.fit(X_train,y_train)
            training_scores.append(clf.score(X_train,y_train))
            testing_scores.append(clf.score(X_test,y_test))
        ax.plot(Ks,testing_scores,label='testing score:weight=%s'%weight)
        ax.plot(Ks,training_scores,label='training score:weight=%s'%weight)
    ax.legend(loc='best')
    ax.set_xlabel("K")
    ax.set_ylabel("score")
    ax.set_ylim(0,1.05)
    ax.set_title("KNeighborClassifier")
    plt.show()
test_K_Weights(X_train,X_test,y_train,y_test)
#也可以看看p值不同时的影响,但是貌似区别不大,几乎是差不多的。 
#此处的运行结果得现跑。。。。。。

#测试KNN回归算法
def test_KNeighborsRegressor(*data):
    X_train,X_test,y_train,y_test= data
    regr = neighbors.KNeighborsRegressor()
    regr.fit(X_train,y_train)
    print 'Training score:',regr.score(X_train,y_train)
    print 'Testing score:',regr.score(X_test,y_test)
    #print 'kneighbors_graph:',regr.kneighbors_graph([X_train,5,mode])
test_KNeighborsRegressor(X_train,X_test,y_train,y_test)    
'''
运行结果:
Training score: 0.979070856523
Testing score: 0.951660029435
'''                             

3.kNN在scikit-learn中的源码解读:

  由于scikit-learn本身是个很大并且复杂的机器学习算法库,所以看具体的kNN算法之前需要理清很多关系,这方面我找到了写的比较清晰的三篇文章:
  https://blog.csdn.net/u014688145/article/details/61916582
  https://blog.csdn.net/u014688145/article/details/62424762
  https://blog.csdn.net/u014688145/article/details/64442996
  根据这三篇文章,我还是想总结一下关于neighbors中的结构关系:
  分类调用链:
  scikit-learn中kNN模型的使用及源码解读_第1张图片
  分类预测与打分:
  scikit-learn中kNN模型的使用及源码解读_第2张图片
  回归调用链:
  scikit-learn中kNN模型的使用及源码解读_第3张图片
  回归预测与打分:
  scikit-learn中kNN模型的使用及源码解读_第4张图片
  KNeighborsClassifier位于neighbors包下的classification.py文件下 ,源码如下:

"""最近邻分类"""

import numpy as np
from scipy import stats
from ..utils.extmath import weighted_mode

from .base import \
    _check_weights, _get_weights, \
    NeighborsBase, KNeighborsMixin,\
    RadiusNeighborsMixin, SupervisedIntegerMixin
from ..base import ClassifierMixin
from ..utils import check_array


class KNeighborsClassifier(NeighborsBase, KNeighborsMixin,
                           SupervisedIntegerMixin, ClassifierMixin):
    """kNN分类使用的是投票法实现的.后面实际上给了一大堆的参数解释,翻译过来就在第一部分,我已经写出来了~~ 
    当然也要注意,不止这一个算法实现,还有下面的:
    --------
    RadiusNeighborsClassifier
    KNeighborsRegressor
    RadiusNeighborsRegressor
    NearestNeighbors
"""
#构造函数
    def __init__(self, n_neighbors=5,
                 weights='uniform', algorithm='auto', leaf_size=30,
                 p=2, metric='minkowski', metric_params=None, n_jobs=1,
                 **kwargs):

        super(KNeighborsClassifier, self).__init__(
            n_neighbors=n_neighbors,
            algorithm=algorithm,
            leaf_size=leaf_size, metric=metric, p=p,
            metric_params=metric_params,
            n_jobs=n_jobs, **kwargs)
        self.weights = _check_weights(weights)

    def predict(self, X):
        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)
        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_samples = X.shape[0]
        weights = _get_weights(neigh_dist, self.weights)

        y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype)
        for k, classes_k in enumerate(classes_):
            if weights is None:
                mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
            else:
                mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

            mode = np.asarray(mode.ravel(), dtype=np.intp)
            y_pred[:, k] = classes_k.take(mode)

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        return y_pred

    def predict_proba(self, X):

        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)

        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_samples = X.shape[0]

        weights = _get_weights(neigh_dist, self.weights)
        if weights is None:
            weights = np.ones_like(neigh_ind)

        all_rows = np.arange(X.shape[0])
        probabilities = []
        for k, classes_k in enumerate(classes_):
            pred_labels = _y[:, k][neigh_ind]
            proba_k = np.zeros((n_samples, classes_k.size))

            # a simple ':' index doesn't work right
            for i, idx in enumerate(pred_labels.T):  # loop is O(n_neighbors)
                proba_k[all_rows, idx] += weights[:, i]

            # normalize 'votes' into real [0,1] probabilities
            normalizer = proba_k.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba_k /= normalizer

            probabilities.append(proba_k)

        if not self.outputs_2d_:
            probabilities = probabilities[0]

        return probabilities

KNeighborsRegressor位于neighbors包下的Regression.py文件下 ,源码如下:

"""最近邻回归"""

import warnings

import numpy as np
from scipy.sparse import issparse

from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin
from .base import RadiusNeighborsMixin, SupervisedFloatMixin
from ..base import RegressorMixin
from ..utils import check_array


class KNeighborsRegressor(NeighborsBase, KNeighborsMixin,
                          SupervisedFloatMixin,
                          RegressorMixin):
    """基于k近邻的回归"""

    def __init__(self, n_neighbors=5, weights='uniform',
                 algorithm='auto', leaf_size=30,
                 p=2, metric='minkowski', metric_params=None, n_jobs=1,
                 **kwargs):
        super(KNeighborsRegressor, self).__init__(
              n_neighbors=n_neighbors,
              algorithm=algorithm,
              leaf_size=leaf_size, metric=metric, p=p,
              metric_params=metric_params, n_jobs=n_jobs, **kwargs)
        self.weights = _check_weights(weights)

    def predict(self, X):

        if issparse(X) and self.metric == 'precomputed':
            raise ValueError(
                "Sparse matrices not supported for prediction with "
                "precomputed kernels. Densify your matrix."
            )
        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)

        weights = _get_weights(neigh_dist, self.weights)

        _y = self._y
        if _y.ndim == 1:
            _y = _y.reshape((-1, 1))

        if weights is None:
            y_pred = np.mean(_y[neigh_ind], axis=1)
        else:
            y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64)
            denom = np.sum(weights, axis=1)

            for j in range(_y.shape[1]):
                num = np.sum(_y[neigh_ind, j] * weights, axis=1)
                y_pred[:, j] = num / denom

        if self._y.ndim == 1:
            y_pred = y_pred.ravel()

        return y_pred

  上面的源码并不是全部,而只是取了其中的一部分出来,而且果然看源码不要太深入细节,纠结~~~应该先建立一个大的框架,才比较容易梳理→_→

你可能感兴趣的:(机器学习)