POJ2391 Ombrophobic Bovines 网络流拆点+二分+floyed

题目链接:

poj2391





题意:

有n块草地,每块草地上有一定数量的奶牛和一个雨棚,并给出了每个雨棚的容(牛)量.

有m条路径连接这些草地  ,这些路径是双向的,而且很宽敞,可以容下无限条牛并排走, 给出经过每条路径所需要消耗的时间

问:所有牛都到达雨棚下的最小时间



解题思路:

类似    牛与挤奶器的问题

http://blog.csdn.net/axuan_k/article/details/45920969  已给出基本思路

与上题最大的区别是: 

草地既连接源点,也连接汇点  而且草地与草地之间的路径是双向的.而网络流中的应该是单向的,

这就需要我们拆点了: 把每块草地拆成两个点 i和n+i;且i到n+i的距离为0 ,只连接(1~n)->(n+1~2n)的边

这样,就和上题解法一样了

要注意的是: 时间可能大于 int;距离初值应赋为long long的无穷大




代码:

#include 
#include 
#include
#define LL long long
#include 
const int MAXN =1050;
const int MAXM=440020;
const int INF=0x3f3f3f3f;
using namespace std;
struct Edge
{
    int to,cap,flow,next;
} edge[MAXM];
int head[MAXN],tot,gap[MAXN],d[MAXN],cur[MAXN],que[MAXN],p[MAXN];

void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int c,int f)
{
    edge[tot]=(Edge)
    {
        v,c,f,head[u]
    };
    head[u] = tot++;
    edge[tot]=(Edge)
    {
        u,c,c,head[v]
    };
    head[v] = tot++;
}

int isap(int source,int sink,int N)
{
    memset(gap,0,sizeof(gap));
    memset(d,0,sizeof(d));
    memcpy(cur,head,sizeof(head));
    int top = 0,x = source,flow = 0;
    while(d[source] < N)
    {
        if(x == sink)
        {
            int Min = INF,inser=0;
            for(int i = 0; i < top; ++i)
            {
                if(Min > edge[p[i]].cap - edge[p[i]].flow)
                {
                    Min = edge[p[i]].cap - edge[p[i]].flow;
                    inser = i;
                }
            }
            for(int i = 0; i < top; ++i)
            {
                edge[p[i]].flow += Min;
                edge[p[i]^1].flow -= Min;
            }
            if(Min!=INF) flow += Min;
            top = inser;
            x = edge[p[top]^1].to;
            continue;
        }
        int ok = 0;
        for(int i = cur[x]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if(edge[i].cap > edge[i].flow && d[v]+1 == d[x])
            {
                ok = 1;
                cur[x] = i;
                p[top++] = i;
                x = edge[i].to;
                break;
            }
        }
        if(!ok)
        {
            int Min = N;
            for(int i = head[x]; i != -1; i = edge[i].next)
            {
                if(edge[i].cap > edge[i].flow && d[edge[i].to] < Min)
                {
                    Min = d[edge[i].to];
                    cur[x] = i;
                }
            }
            if(--gap[d[x]] == 0) break;
            gap[d[x] = Min+1]++;
            if(x != source) x = edge[p[--top]^1].to;
        }
    }
    return flow;
}

LL dis[MAXN][MAXN];
int v[MAXN][2];
void build(int n,LL value)
{
    init();
    for(int i=1; i<=n; i++)
    {
        addedge(0,i,v[i][0],0);
        addedge(n+i,2*n+1,v[i][1],0);
    }
    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++)
            if(dis[i][j]<=value)
                addedge(i,n+j,INF,0);
}

int main()
{
//    freopen("in.txt","r",stdin);
    int n,m,a,b;
    LL c;
    int sum=0,sum2=0;
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i != j) dis[i][j] = 2000000000000LL; //初始化long long的无穷大
            else dis[i][j] = 0;
    for(int i=1; i<=n; i++)
    {
        scanf("%d%d",&v[i][0],&v[i][1]);
        sum+=v[i][0];
        sum2+=v[i][1];
    }
    for(int i=1; i<=m; i++)
    {
        scanf("%d%d%lld",&a,&b,&c);
        if(dis[a][b]>c)          //选最小的
            dis[a][b]=dis[b][a]=c;
    }
    if(sum>sum2)
    {
        printf("-1\n");
        return 0;
    }
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                if(dis[i][k]+dis[k][j]>1;
        build(n,mid);
        d=isap(0,2*n+1,2*n+2);
        if(d==sum)
        {
            ans=mid;
            r=mid-1;
        }
        else l=mid+1;
    }
    printf("%lld\n",ans);
    return 0;
}




你可能感兴趣的:(算法)