FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。
该类模板是最近邻索引类,该类用于抽象不同类型的最近邻搜索的索引。
以下是flann::Index_类的声明:
template <typename T>
class
#ifndef _MSC_VER
FLANN_DEPRECATED
#endif
Index_ {
public:
typedef typename L2<T>::ElementType ElementType;
typedef typename L2<T>::ResultType DistanceType;
Index_(const Mat& features, const ::cvflann::IndexParams& params);
~Index_();
void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
void save(std::string filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
int veclen() const
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
int size() const
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
}
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
private:
// providing backwards compatibility for L2 and L1 distances (most common)
::cvflann::Index< L2<ElementType> >* nnIndex_L2;
::cvflann::Index< L1<ElementType> >* nnIndex_L1;
};
flann::Index_<T>::Index_(const Mat& features, const IndexParams& params)
/*
Parameters:
features – Matrix of containing the features(points) to index. The size of the matrix is num_features x feature_dimensionality and the data type of the elements in the matrix must coincide with the type of the index.
params – Structure containing the index parameters. The type of index that will be constructed depends on the type of this parameter. See the description.
*/
参数features,是包含用于构建索引的特征的矩阵;参数params,是包含索引参数的结构。
该构造函数所实例的快速搜索结构是根据参数params所指定的特定算法来构建的。params是由IndexParams的派生类的引用。
其中:
* LinearIndexParams,该结构对应的索引进行线性的、暴力(brute-force)的搜索。
struct KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams( int trees = 4 );
};
//trees:The number of parallel kd-trees to use. Good values are in the range
struct KMeansIndexParams : public IndexParams
{
KMeansIndexParams(
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2 );
};
struct CompositeIndexParams : public IndexParams
{
CompositeIndexParams(
int trees = 4,
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2 );
};
struct LshIndexParams : public IndexParams
{
LshIndexParams(
unsigned int table_number,
unsigned int key_size,
unsigned int multi_probe_level );
};
struct AutotunedIndexParams : public IndexParams
{
AutotunedIndexParams(
float target_precision = 0.9,
float build_weight = 0.01,
float memory_weight = 0,
float sample_fraction = 0.1 );
};
struct SavedIndexParams : public IndexParams
{
SavedIndexParams( std::string filename );
};
//filename:The filename in which the index was saved.
根据给定的查询数据,利用构建的索引来执行k近邻搜索。
void flann::Index_<T>::knnSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& params)
void flann::Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params)
根据给定的查询数据,执行基于半径的最近邻搜索。
int flann::Index_<T>::radiusSearch(const vector<T>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& params)
int flann::Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& params)
将索引存成文件。
void flann::Index_<T>::save(std::string filename)
得到索引参数。
const IndexParams* flann::Index_<T>::getIndexParameters()
接下来给出一段小的官方示例程序,使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配。
这段代码的主要流程分为以下几部分:
- 使用SURF特征提取关键点
- 计算SURF特征描述子
- 使用FLANN匹配器进行描述子向量匹配
OpenCV提供了 两种Matching方式 :
? Brute-force matcher (cv::BFMatcher)
? Flann-based matcher (cv::FlannBasedMatcher)
Brute-force matcher就是用暴力方法找到点集一中每个descriptor在点集二中距离最近的 descriptor;
Flann-based matcher 使用快速近似最近邻搜索算法寻找。
为了提高检测速度,你可以调用matching函数前,先训练一个matcher。训练过程可以首先使用cv:: FlannBasedMatcher来优化,为 descriptor建立索引树,这种操作将在匹配大量数据时发挥巨大作用(比如在上百幅图像的数据集中查找匹配图像)。而 Brute-force matcher在这个过程并不进行操作,它只是将train descriptors保存在内存中。
#include
#include
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/features2d.hpp"
using namespace cv;
/** @function main */
int main( int argc, char** argv )
{
Mat img_1 = imread("box.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread("box_in_scene.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
}
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
for( int i = 0; i < good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
waitKey(0);
return 0;
}
flann项目主页
flann手册 pdf
学习OpenCV——Surf(特征点篇)&flann
OpenCV documentation:Fast Approximate Nearest Neighbor Search
转载请注明作者Jason Ding及其出处
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)