Dfn: ”Field“ is a commutative ring , s.t. every non-zero element has inverse.
这个交换环对于乘法和加法都满足交换性,而且对于所有非零元素都存在逆。
这两个都满足,u是对应元素的逆。加法的逆写成-v, 乘法的逆写成都是可以的,都是符号表示。
Dfn: Let be a field. A polynomial over a field is an equation of the form :, where the coefficients . The set of all polynomials over a field is denoted .
Dfn: "Idela" of is a subset of s.t. it is closed under addition and closed under multiplication by any element of .
i.e. the set of even integers is an ideal in the ring of integers . Given an ideal , it is possible to define a quotient ring .
i.e. is ideal.
Dfn: a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field.
环上的一个模,域上的一个向量空间。在模中的系数是来自于环的,而向量空间中的系数是来自于域的。(域的定义更为严格,比之于环),系数的寻去空间更为通用,因此说模是向量空间的泛化。
Dfn: 也叫整环,指的是不含零因子(divisor)的交换环。环中乘法的单位元通常和加法的单位元不同,整环是整数环的抽象化。关于交换环(commutative ring)的定义可以参看抽象代数入门(一)。
i.e. is an intergral domain.
Dfn: 每个理想都可以由单个元素生成的环,写成left ideal xR or right ideal Rx 的形式,其中 x 是 环 R 中的一个元素。
Dfn: 如果交换的理想环R 同时也是整环,那么称之为主理想域(principal ideal domain), 简写成 P.I.D.
i.e. 整数环是主理想域,Eucildean Ring 一般都是。
多项式环是对初等数学中多项式的泛化,通常表示成 。
Dfn: The polynomial ring, , in over is defined as:
, is the coefficient of , 只是一个符号, 称为 powers of .
The ideal generated by a finite set of polynomials defined as:
Dfn: a single-variable polynomial(univariate polynomial) in which the leading coefficient is equal to 1. Which can be written in the form:
Dfn: 唯一分解环是一个整环(integral domain), 其元素都可以表示成有限个不可约元素乘积的形式,并在允许重排下唯一,相当于满足基本算术定理的整环。简写为UFD.
A integral domain R is said to be a unique factorization domain if it has the following factorization properties:
Every principal ideal domain R is a unique factorization domain.