抽象代数入门(四)

向量空间(vector space)

Definition of vector space: a vector space is a set closed under vector additon and scalar multiplication.

  1. 满足加法交换律、结合律、分配律,存在加法单位元
  2. 满足标量乘法的交换律、结合律、分配律,存在乘法单位元

Cyclic Subspace(循环子空间)

Dfn: 循环子空间是通过有限维的向量空间和一个线性变换构成的。

 

A cyclic subspace of \mathbb{F}[x] can be defined as:

\mathbf{A}\in\mathbb{R}^{n\times n}, v\in\mathbb{F}^n, \mathbb{F}[x]v = \left\{p(\mathbf{A})v|\forall p\in \mathbb{F}[x] \right\}

p(\mathbf{A})v = a_0v + a_1\mathbf{A}v + a_2\mathbf{A}^2v + ...+ a_m\mathbf{A}^mv\mathbb{F}[x]v is A-invariant subspace of \mathbb{F}^m.

prf: V=\mathbb{F}[x]v\subset \mathbb{F}^n, V is A-invariant, u\in V\Rightarrow u=pv. Au=A(pv)

Rem:

  1. A 的特征向量同以为的A-invariant 子空间一一对应。
  2. If v is an eigenvector of A, \mathbb{F}[x]v = Span(v).

Definition: T=ann(\mathbb{F}^n). we all know that every ideal of \mathbb{F}[x] is principal. i.e. it can be generated by one element.

\begin{center}T=ann(\mathbb{F}^n)=(m_A) \end{center}m_A is the monoic, smallest degree s.t. m_A(A)=0. () 表示这个多项式生成的向量空间。

注意:T=ann(\mathbb{F}^n)=\left\{q\in\mathbb{F}[x]|qv=0,\forall v\in\mathbb{F}^n \right\}

A-invariant

Definition: A\in\mathbb{R}^{n\times n}, A: \mathbb{R}^n\rightarrow \mathbb{R}^n. S is a subspace of \mathbb{R}^n.We say "S" is A-invariant if A(S)\subset S. i.e. \forall s\in S, As\in S.

简写成 \tau_A|_V:V\rightarrow V\tau_A:\mathbb{F}^n{\rightarrow}^A\mathbb{F}^n.

Definition: If v is eigenvector of A, \mathbb{F}[x]v=Span(v)

m_{\tau_A}|\mathbb{F}[x]v=x-\lambda, Av=\lambda v\forall u\in\mathbb{F}[x]v\rightleftharpoons Au=\lambda v, (x-\lambda)v=0

\Rightarrow \mathbb{F}[x]v = Span(v, xv, .., x^{s-1}v)

 

 

你可能感兴趣的:(Mathmatic,abstract,algebra)