[Getting and Cleaning data] Week 4

  • Week 4
    • Editing text variables
    • Regular expressions
    • Working with dates

More details could be found in the html file here

Week 4

Editing text variables

Important points about text in data set

  • Names of variables should be
    • All lower cases when possible
    • Descriptive (Diagnosis versus Dx)
    • Not duplicated
    • Not have underscores or dots or white spaces
  • Variables with caracter values

    • Should usually be made into factor variables(depend on application)
    • Should be descriptive(use TRUE/FALSE instead of 0/1 and Male/Femal versus 0/2 or M/F)
  • Step 1: Fixing charactre vectors topupper and tolower functions.

if(!file.exists("./data")) dir.create("./data")
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/cameras.csv")
cameraData <- read.csv("./data/cameras.csv")
names(cameraData)
tolower(names(cameraData))
  • Step 2: Fixing character vectors strsplit function.
    • Good for automatically splitting variable names.
    • Important paramters:x and split
splitNames <- strsplit(names(cameraData), "\\.")
splitNames[[5]]
splitNames[[6]]
  • Step 3: Quick aside lists
myList <- list(letters = c("A", "b", "c"), numbers = 1:3, matrix(1:15, 5))
head(myList)
  • Step 4: Fixing character vectors sapply
    • Applies a function to each element in a vector or list.
    • Implortant parameted: x Fun
splitNames[[6]][1]
firstElement <- function(x) x[1]
sapply(splitNames, firstElement)
  • Step 5: Peer review data
if(!file.exists("./data")) dir.create("./data")
# download data set
fileUrl1 <- "https://dl.dropbox.com/u/7710864/data/reviews-apr29.csv"
fileUrl2 <- "https://dl.dropbox.com/u/7710864/data/solutions-apr29.csv"
download.file(fileUrl1, destfile = "./data/reviews.csv")
download.file(fileUrl2, destfile = "./data/solution.csv")
# load data set
reviews <- read.csv("./data/reviews.csv")
solutions <- read.csv("./data/solution.csv")
# view data set
head(reviews, 2)
head(solutions, 2)
  • Step 6: Fixing character vectors sub()(replace the first match)
names(reviews)
sub("_", "", names(reviews))
  • Step 7: Fixing character vectors gsub() (replace globally)
testName <- "this_is_a_test"
sub("_", "", testName)
gsub("_", "", testName)
  • Step 8: Find values grep() and grepl() functions
grep("Alameda", cameraData$intersection) # return index
table(grepl("Alameda", cameraData$intersection)) # return true or false
cameraData2 <- cameraData[!grepl("Alameda", cameraData$intersection), ]
  • Step 9: More on grep()
grep("Alameda", cameraData$intersection, value = TRUE) # retrun names containing "Aladema"
grep("JeffStreet", cameraData$intersection)
length(grep("JeffStreet", cameraData$intersection))
  • Step 10: More useful string functions
library(stringr)
nchar("Jeffrey Leek")
substr("jeffrey Leek", 1, 7)
paste("Jeffrey", "Leek")
paste0("Jeffrey", "Leek")
str_trim("Jeff    ")

Regular expressions

Regular expressions:

  • A ‘regular expression’ is a pattern that describes a set of strings. Two types of regular expressions are used in R, extended regular expressions (the default) and Perl-like regular expressions used by perl = TRUE. There is a also fixed = TRUE which can be considered to use a literal regular expression.
    Here we cansider the extended regular expressions used in grep, grepl, regexpr, gregexpr, sub, gsub and strsplit.
  • Most characters, including all letters and digits, are regular expressions that match themselves. Any metacharacter with special meaning may be quoted by preceding it with a backslash. The metacharacters in extended regular expressions are . \ | ( ) [ { ^ $ * + ?, but note that whether these have a special meaning depends on the context.

  • Positions

    • 1: ^ matches the begining.
    • 2: $ matches the end.
    • 3: \b matches the empty string at either edge of a word.
    • 4: \B matches the empty string provided it is not at an edge of a word.
  • Quantifiers

    • 1: * matches at least 0 times.
    • 2: + matches at least 1 times.
    • 3: ? matches at most 1 times.
    • 4: {m} matches exactly m times.
    • 5: {m.} matches at least m times.
    • 6: {n, m} matches between n to m times.
  • Others:

    • 1: [ ] matches any character appearing in []. ex: [a-z]
    • 2: [^ ] matches any character not appearing in [ ].
    • 3: . matches any character.
    • 4: | matches alternative metacharacters.
    • 5: \ suppress the special meaning of metacharacters in regular expression.
    • 6: () groups expression.
  • Character classes:

    • 1: [:digit:] or \d equivalent to [0-9].
    • 2: [:lower:] equivalent to [a-z].
    • 3: [:upper:] equivalent to [A-Z].
    • 4: [:alpha:] equivalent to [a-zA-Z] or [[:lower:][:upper:]].
    • 5: [:alnum:] equivalent to [A-z0-9] or [[:digit:][:alpha:]].
    • 6: \w equivalent to [[:apnum]_] or [A-z0-9_].
    • 7: \W equivalent [^A-z0-9].
    • 8: [:xdigit:] matches 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.
    • 9: [:blank:] matches space or tab.
    • 10: [:space:] marches tab, newline, vertical tab, form feed, carriage return, space.
    • 11: \s space ” “.
    • 12: \S not space.
    • 13: [:punct] matches ! " # $ % & ’ ( ) * + , - . / : ; < = > ? @ [ ] ^ _ ` { | } ~.
    • 14: [:graph:] equivalent to [[:alnum:][:punct:]].
    • 15: [:print:] equivalent to [[:alnum:][:punct:]\\s].
    • 16: [:cntrl:] control characters, like \n or \r, [\x00-\x1F\x7F].

R function summary:

  • 1: Identify match to a pattern: grep(..., value = FALSE), grepl(), stringr::str_detect().
  • 2: Extract match to a pattern: grep(..., value = TRUE), stringr::str_extract(), stringr::str_extract_all().
  • 3: Locate pattern within a string, i.e. give the start position of matched patterns. regexpr(), gregexpr(), stringr::str_locate(), string::str_locate_all().
  • 4: Replace a pattern: sub(), gsub(), stringr::str_replace(), stringr::str_replace_all().
  • 5: Split a string using a pattern: strsplit(), stringr::str_split().

Working with dates

  • Step 1: Starting simple. date() returns a character that gives you the date and time.
d1 <- date()
d1
class(d1)
  • Step 2: Data class.
d2 <- Sys.Date()
d2
class(d2)
  • Step 3: Formatting dates.
    • %d = days as number(0-31).
    • %a = abbreviated weekday.
    • %A = unabbreviated weekday.
    • %m = month(00-12).
    • %b = abbreviated month.
    • %B = unabbreviated month.
    • %y = 2 digit year.
    • %Y = 4 digit year.
format(d2, "%a %b %d")
  • Step 4: Creating dates.
# if returns NA, please use
lct <- Sys.getlocale("LC_TIME")
Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30Jul1960")
z <- as.Date(x, "%d%b%Y")
z
z[1] - z[2]
as.numeric(z[1] - z[2])
  • Step 5: Converting to Julian.
weekdays(d2)
months(d2)
julian(d2)
  • Step 6: lubridate package.
library(lubridate)
ymd("20140108")
mdy("08/04/2013")
dmy("03-04-2013")
  • Step 7: Dealing with time.
ymd_hms("2011-08-03 10:15:03")
ymd_hms("2011-08-03 10:15:03", tz = "Pacific/Auckland")
  • Step 8: Some functions have slightly different syntax.
x <- dmy(c("1jan2013", "2jan2013", "31mar2013", "30Jul2013"))
wday(x[1])
wday(x[1], label = TRUE)
ymd("1989 May 17")
mdy("March 12 1975")
dmy(25081985)
ymd("1920/1/2")
ymd_hms(now())
hms("03:22:14")
  • Step 9: Dealing with vector of dates.
dt2 <- c("2014-05-14", "2014-09-22", "2014-07-11")
ymd(dt2)

你可能感兴趣的:(statistics,R,coursera,data,science)