Problem Description
Give you a sequence of N(N≤100,000) integers : a1,...,an(0
Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.
The first line of each case contains a number N, denoting the number of integers.
The second line contains N integers, a1,...,an(0
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).
Sample Input
1
5
1 2 4 6 7
4
1 5
2 4
3 4
4 4
Sample Output
Case #1:
1 8
2 4
2 4
6 1
可蛋疼的一个题,一开始想用线段树来搞,但是第二部分的查询没想出来,发现网上大神们多用RMQ解决,学习一番后总结如下:
这题能用rmq是因为满足rmq那个转移方程(还是线段树更全能啊。。。);
区间增长后gcd快速减小至1也是降低时间复杂度的重要依据;
第二部分直接对每个L,进行对R的二分,用map统计得出结果;
代码如下:
#include
#define rep(i,j,k) for(int i = j; i <= k; i++)
#define LL long long
using namespace std;
int n, m;
int f[100010][18];
int a[100010];
map<int, LL>mp;
int gcd(int a, int b) {return b?gcd(b,a%b):a;}
void rmq(){
rep(i,1,n) f[i][0] = a[i];
rep(j,1,17)
rep(i,1,n)
if(i+(1<1 <= n)
f[i][j] = gcd(f[i][j-1], f[i+(1<1)][j-1]);
}
int ser(int l, int r){
int k = (int)log2((double)(r - l + 1));
return gcd(f[l][k],f[r-(1<1][k]);
}
void setTable(){
mp.clear();
rep(i,1,n){
int g = f[i][0],j = i;
while(j <= n){
int l = j, r = n;
while(l < r){
int mid = (l+r+1)>>1;
if(ser(i, mid) == g) l = mid;
else r = mid - 1;
}
mp[g] += l-j+1;
j = l + 1;
g = ser(i,j);
}
}
}
int main(){
int t, l, r;
int cas = 1;
cin >> t;
while(t--){
cin >> n;
rep(i,1,n) scanf("%d", a+i);
rmq();
setTable();
cin >> m;
printf("Case #%d:\n", cas++);
rep(i,0,(m-1)){
scanf("%d%d", &l, &r);
int tmp = ser(l, r);
printf("%d %I64d\n", tmp, mp[tmp]);
}
}
return 0;
}
学习到新东西了…