- OpenAI o1 的价值意义及“强化学习的Scaling Law” & Kimi创始人杨植麟最新分享:关于OpenAI o1新范式的深度思考
光剑书架上的书
ChatGPT大数据AI人工智能计算人工智能算法机器学习
OpenAIo1的价值意义及“强化学习的ScalingLaw”蹭下热度谈谈OpenAIo1的价值意义及RL的Scalinglaw。一、OpenAIo1是大模型的巨大进步我觉得OpenAIo1是自GPT4发布以来,基座大模型最大的进展,逻辑推理能力提升的效果和方法比预想的要好,GPT4o和o1是发展大模型不同的方向,但是o1这个方向更根本,重要性也比GPT4o这种方向要重要得多,原因下面会分析。为什
- 缩小模拟与现实之间的差距:使用 NVIDIA Isaac Lab 训练 Spot 四足动物运动
AI人工智能集结号
人工智能
目录在IsaacLab中训练四足动物的运动能力目标观察和行动空间域随机化网络架构和RL算法细节先决条件用法训练策略执行训练好的策略结果使用JetsonOrin在Spot上部署经过训练的RL策略先决条件JetsonOrin上的硬件和网络设置Jetson上的软件设置运行策略开始开发您的自定义应用程序由于涉及复杂的动力学,为四足动物开发有效的运动策略对机器人技术提出了重大挑战。训练四足动物在现实世界中上
- Codeforces Round 969 (Div. 2 ABCDE题) 视频讲解
阿史大杯茶
Codeforces算法c++数据结构
A.Dora’sSetProblemStatementDorahasasetssscontainingintegers.Inthebeginning,shewillputallintegersin[l,r][l,r][l,r]intothesetsss.Thatis,anintegerxxxisinitiallycontainedinthesetifandonlyifl≤x≤rl\leqx\leq
- 论文速读|全身人型机器人控制学习与序列接触
28BoundlessHope
人形机器人文献阅读人工智能机器人
项目地址:WoCoCo:LearningWhole-BodyHumanoidControlwithSequentialContactsWoCoCo(Whole-BodyControlwithSequentialContacts)框架通过将任务分解为多个接触阶段,简化了策略学习流程,使得RL策略能够通过任务无关的奖励和模拟到现实的设计来学习复杂的人型机器人控制任务。该框架仅需要对每个任务指定少量任务
- 【3.7】贪心算法-解分割平衡字符串
攻城狮7号
贪心算法算法c++
一、题目在一个平衡字符串中,'L'和'R'字符的数量是相同的。给你一个平衡字符串s,请你将它分割成尽可能多的平衡字符串。注意:分割得到的每个字符串都必须是平衡字符串。返回可以通过分割得到的平衡字符串的最大数量。示例1:输入:s="RLRRLLRLRL"输出:4解释:s可以分割为"RL"、"RRLL"、"RL"、"RL",每个子字符串中都包含相同数量的'L'和'R'。示例2:输入:s="RLLLLR
- 基于强化学习的制造调度智能优化决策
松间沙路hba
智能调度强化学习制造智能排程车间调度APS强化学习
获取更多资讯,赶快关注上面的公众号吧!文章目录调度状态和动作设计调度状态的设计调度动作的设计基于RL的调度算法基于值函数的RL调度算法SARSAQ-learningDQN基于策略的RL调度算法基于RL的调度应用基于RL的单机调度基于RL的并行机调度基于RL的流水车间调度基于RL的作业车间调度基于RL的其他调度RL与元启发式算法在调度中的集成应用讨论问题领域算法领域应用领域参考文献生产调度作为制造系
- 深度学习学习经验——强化学习(rl)
Linductor
深度学习学习经验深度学习学习人工智能
强化学习强化学习(ReinforcementLearning,RL)是一种机器学习方法,主要用于让智能体(agent)通过与环境的互动,逐步学习如何在不同情况下采取最佳行动,以最大化其获得的累积回报。与监督学习和无监督学习不同,强化学习并不依赖于已标注的数据集,而是通过智能体在环境中的探索和试错来学习最优策略。强化学习的主要特点:基于试错学习:强化学习中的智能体通过与环境的互动,不断尝试不同的行动
- 粒子群优化算法和强化算法的优缺点对比,以表格方式进行展示。详细解释
资源存储库
笔记笔记
粒子群优化算法(PSO)和强化学习算法(RL)是两种常用的优化和学习方法。以下是它们的优缺点对比,以表格的形式展示:特性粒子群优化算法(PSO)强化学习算法(RL)算法类型优化算法学习算法主要用途全局优化问题,寻找最优解学习和决策问题,优化策略以最大化长期奖励计算复杂度较低,通常不需要梯度信息;计算复杂度与粒子数量和迭代次数有关较高,涉及到策略网络的训练和环境交互;复杂度取决于状态空间、动作空间以
- 请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施
盛溪的猫猫
感悟大数据英语加拿大
目录请介绍一下大数据主要是干什么的?决策支持预测分析用户行为分析个性化服务操作优化风险管理创新与产品开发加拿大卡尔加里大学历史背景学术结构研究和创新校园设施国际化学生生活大语言模型目前的问题卡尔加里经济地理和气候文化和活动教育交通绿色城市AVL树的旋转单右旋(LL旋转)单左旋(RR旋转)左右旋(LR旋转)右左旋(RL旋转)请介绍一下大数据主要是干什么的?大数据是一个涉及从极其庞大和复杂的数据集中提
- TinyUSB 基本使用
czy8787475
DDM单片机
由于早期时候我们产品基于STM32开发,自然而然的用了STM32的USB库,这个本身没什么问题,库也很完善,而且有官方在完善,这本来是个不错的东西,但是随着ST的缺货,问题就越来越多,比如别人的芯片可不会兼容ST的库,如果是标准设备那还好,如果像我们还做HOTPKey这样的,移植起来就相当的麻烦.一开始他们推荐我使用RL-USB,但是RL-USB始终是挂载RTX上的,至于哪一天RTX也出毛病,这就
- 【强化学习】day1 强化学习基础、马尔可夫决策过程、表格型方法
宏辉
强化学习python算法强化学习
写在最前:参加DataWhale十一月组队学习记录【教程地址】https://github.com/datawhalechina/joyrl-bookhttps://datawhalechina.github.io/easy-rl/https://linklearner.com/learn/detail/91强化学习强化学习是一种重要的机器学习方法,它使得智能体能够在环境中做出决策以达成特定目标。
- 今日arXiv最热NLP大模型论文:无需数据集,大模型可通过强化学习与实体环境高效对齐 | ICLR2024
夕小瑶
自然语言处理人工智能深度学习
引言:将大型语言模型与环境对齐的挑战虽然大语言模型(LLMs)在自然语言生成、理解等多项任务中取得了显著成就,但是在面对看起来简单的决策任务时,却常常表现不佳。这个问题的主要原因是大语言模型内嵌的知识与实际环境之间存在不对齐的问题。相比之下,强化学习(RL)能够通过试错的方法从零开始学习策略,从而确保内部嵌入知识与环境的对齐。但是,怎样将先验知识高效地融入这样的学习过程是一大挑战,为了解决这一差距
- 【RL】Bellman Optimality Equation(贝尔曼最优等式)
大白菜~
人工智能算法机器学习人工智能深度学习
Lecture3:OptimalPolicyandBellmanOptimalityEquationDefinitionofoptimalpolicystatevalue可以被用来去评估policy的好坏,如果:vπ1(s)≥vπ2(s) foralls∈Sv_{\pi_1}(s)\gev_{\pi_2}(s)\;\;\;\;\;\text{forall}s\inSvπ1(s)≥
- Codeforces CF1516D Cut
PYL2077
题解#Codeforces数论倍增线段树数据结构
题目大意给出一个长度为nnn的序列aaa,以及qqq次询问每次询问给出l,rl,rl,r,问最少需要把区间[l,r][l,r][l,r]划分成多少段,满足每段内元素的LCM等于元素的乘积这数据范围,这询问方式,一看就是DS题首先,我们考虑LCM的性质。如果一段区间内的数的LCM等于所有元素之积,那么这个区间中的数一定两两互质。我们设nxtinxt_inxti表示iii后面第一个与aia_iai不互
- Linux下安装java11(亲测)
小白想要逆袭
开发环境配置与部署linux运维服务器
1.首先下载java11yumsearchjava-11-openjdk1.1选择相应版本(本人是x86_64)(ps:如果不知道选择哪个版本可以输入arch或者uname-a命令查看系统版本信息)1.2进行下载yuminstalljava-11-openjdk.x86_64-y2.查看java11下载位置ls-rl$(whichjava)3.进行环境配置vim/etc/profile3.1使配置
- 成语故事:乘兴而来
墨殇一语
【乘兴而来】chéngxìngérlái,意思是趁着兴致来到,结果很扫兴的回去。出自于《晋书.王徽之传》:“徽之曰:‘本乘兴而来,兴尽而返,何必见安道耶?’”王徽之是东晋时的大书法家王羲之的三儿子,生性高傲,不愿受人约束,行为豪放不拘。虽说在朝做官,却常常到处闲逛,不处理官衙内的日常事务。后来,他干脆辞去官职,隐居在山阴(今绍兴),天天游山玩水,饮酒吟诗,倒也落得个自由自在。有一年冬天,鹅毛大雪纷
- 算法竞赛例题讲解:平方差 第十四届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组 C平方差
若亦_Royi
C++算法算法蓝桥杯c语言
题目描述给定LLL和RRR,问L≤x≤RL\leqx\leqRL≤x≤R中有多少个数xxx满足存在整数yyy,zzz使得x=y2−z2x=y^{2}-z^{2}x=y2−z2。输入格式输入一行包含两个整数LLL,RRR,用一个空格分隔。输出格式输出一行包含一个整数满足题目给定条件的xxx的数量。输入输出样例输入#115输出#14说明/提示【样例说明】1=12−021=1^{2}−0^{2}1=12
- 【RL】Bellman Equation (贝尔曼等式)
大白菜~
人工智能概率论人工智能算法机器学习
Lecture2:BellmanEquationStatevalue考虑grid-world的单步过程:St→AtRt+1,St+1S_t\xrightarrow[]{A_t}R_{t+1},S_{t+1}StAtRt+1,St+1ttt,t+1t+1t+1:时间戳StS_tSt:时间ttt时所处的stateAtA_tAt:在stateStS_tSt时采取的actionRt+1R_{t+1}Rt+
- 【RL】Basic Concepts in Reinforcement Learning
大白菜~
人工智能机器学习算法人工智能深度学习
Lecture1:BasicConceptsinReinforcementLearningMDP(MarkovDecisionProcess)KeyElementsofMDPSetState:ThesetofstatesS\mathcal{S}S(状态S\mathcal{S}S的集合)Action:thesetofactionsA(s)\mathcal{A}(s)A(s)isassociatedf
- AVL树
土豆有点
AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:image.png上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它
- DQN的理论研究回顾
Jay Morein
强化学习与多智能体深度学习学习
DQN的理论研究回顾1.DQN简介强化学习(RL)(Reinforcementlearning:Anintroduction,2nd,ReinforcementLearningandOptimalControl)一直是机器学习的一个重要领域,近几十年来获得了大量关注。RL关注的是通过与环境的交互进行连续决策,从而根据当前环境制定指导行动的策略,目标是实现长期回报最大化。Q-learning是RL中
- Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(八)
绝不原创的飞龙
人工智能tensorflow
原文:Hands-OnMachineLearningwithScikit-Learn,Keras,andTensorFlow译者:飞龙协议:CCBY-NC-SA4.0第十八章:强化学习强化学习(RL)是当今最激动人心的机器学习领域之一,也是最古老的之一。自上世纪50年代以来一直存在,多年来产生了许多有趣的应用,特别是在游戏(例如TD-Gammon,一个下棋程序)和机器控制方面,但很少成为头条新闻。
- PyTorch 2.2 中文官方教程(八)
绝不原创的飞龙
人工智能pytorch
训练一个玛丽奥玩游戏的RL代理原文:pytorch.org/tutorials/intermediate/mario_rl_tutorial.html译者:飞龙协议:CCBY-NC-SA4.0注意点击这里下载完整的示例代码作者:冯元松,SurajSubramanian,王浩,郭宇章。这个教程将带你了解深度强化学习的基础知识。最后,你将实现一个能够自己玩游戏的AI马里奥(使用双深度Q网络)。虽然这个
- day18-三剑客-sed
杨丶子
16952149-298845fa3deeeae5.png三剑客——sed(增删改查)grep的参数grep过滤-i不区分大小写-v取反-n显示行号-o显示每次grep匹配到的内容-E支持扩展正则egrep-w按照单词匹配-A显示grep找出的内容下几行-B显示grep找出的内容上几行-C同时显示grep找出的内天上下几行-l过滤时只显示文件名不显示内容-R递归进行过滤grep-Rl'oldboy
- leetcode167 两数之和 II - 输入有序数组
南方乌鸦
算法leetcode数据结构
文章目录1.解法:双指针2.原题[167.两数之和II-输入有序数组](https://leetcode.cn/problems/two-sum-ii-input-array-is-sorted/)1.解法:双指针定义两个指针分别l,rl,rl,r指向数组的最小和最大元素,即左右边界,其中lll向右遍历,rrr向左遍历当l,rl,rl,r指向的两数之和等于target,就是我们要的结果。如果大于t
- H12-831_206
cn_1949
网络
206、根据本图,我们可以判断出?A.Rl的设备类型肯定不是Level-1B.R1有6条IS-IS的IPv6路由C.R1没有IS-IS的IPv6路由D.R1的GigabitEthernetO/0/1一定使能了IS-ISIPv6答案:ABD注释:这道题关注点是A选项。Level-1-2路由器和Level-2路由器才能学习到ISIS-L2路由。
- 用通俗易懂的方式讲解:一文详解大模型 RAG 模块
Python算法实战
大模型理论与实战大模型人工智能大模型langchain深度学习RAG检索增强生成多模态大模型
文章目录什么是RAG?技术交流&资料通俗易懂讲解大模型系列RAG模块化什么是模块化RAG?索引模块块优化滑动窗口从小到大元数据附加结构化组织层次化索引知识图谱文档组织预检索模块查询扩展多查询子查询CoVe查询转换重写HyDE查询路由元数据路由器/过滤器语义路由器查询构建检索模块检索模型选择稀疏检索器密集检索器检索器微调SFT(自我训练)LSR(语言模型监督检索器)RL(强化学习)Adapter后处
- Python 实战人工智能数学基础:强化学习
Python人工智能大数据
Python入门实战Java入门实战React入门实战大数据人工智能语言模型JavaPythonReact架构设计
1.背景介绍强化学习(ReinforcementLearning,简称RL)是一种人工智能技术,它旨在让计算机代理在与环境的交互中学习如何执行行动,以最大化累积奖励。强化学习的核心思想是通过试错、反馈和奖励来学习,而不是通过传统的监督学习方法,如分类器或回归器。强化学习的主要应用领域包括游戏(如AlphaGo)、自动驾驶(如TeslaAutopilot)、机器人控制(如BostonDynamics
- pytorch_car_caring 排坑记录
Debug的魔法小马
项目复现踩坑记录pytorch人工智能python
pytorch_car_caring排坑记录任务踩坑回顾简单环境问题代码版本问题症状描述解决方法cuda问题(异步问题)症状描述解决方法任务因为之前那个MPC代码跑出来的效果不理想,看了一天代码,大概看明白了,但要做改进还要有不少工作(对我来说),特别是如何对效果进行评估。正好我还要用到RL做这个任务的代码,就在github上看了下,发现有几个,打算都跑跑,看谁效果好,代码又干净,就用谁的。本菜鸡
- 【具身智能】论文系列解读-RL-ViGen & ArrayBot & USEEK
JackCrum
具身智能LLM神经网络人工智能
1.RL-ViGen:视觉泛化的强化学习基准RL-ViGen:AReinforcementLearningBenchmarkforVisualGeneralization0摘要与总结视觉强化学习(VisualRL)与高维观察相结合,一直面临着分布外泛化的长期挑战。尽管重点关注旨在解决视觉泛化问题的算法,但我们认为现有的基准测试存在问题,因为它们仅限于孤立的任务和泛化类别,从而破坏了对智能体视觉泛化
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs