ConcurrentSkipListMap介绍
ConcurrentSkipListMap是线程安全的有序的哈希表,适用于高并发的场景。
ConcurrentSkipListMap和TreeMap,它们虽然都是有序的哈希表。但是,第一,它们的线程安全机制不同,TreeMap是非线程安全的,而ConcurrentSkipListMap是线程安全的。第二,ConcurrentSkipListMap是通过跳表实现的,而TreeMap是通过红黑树实现的。
关于跳表(Skip List),它是平衡树的一种替代的数据结构,但是和红黑树不相同的是,跳表对于树的平衡的实现是基于一种随机化的算法的,这样也就是说跳表的插入和删除的工作是比较简单的。
ConcurrentSkipListMap原理和数据结构
ConcurrentSkipListMap的数据结构,如下图所示:
说明:
先以数据“7,14,21,32,37,71,85”序列为例,来对跳表进行简单说明。
跳表分为许多层(level),每一层都可以看作是数据的索引,这些索引的意义就是加快跳表查找数据速度。每一层的数据都是有序的,上一层数据是下一层数据的子集,并且第一层(level 1)包含了全部的数据;层次越高,跳跃性越大,包含的数据越少。
跳表包含一个表头,它查找数据时,是从上往下,从左往右进行查找。现在“需要找出值为32的节点”为例,来对比说明跳表和普遍的链表。
情况1:链表中查找“32”节点
路径如下图1-02所示:
需要4步(红色部分表示路径)。
情况2:跳表中查找“32”节点
路径如下图1-03所示:
忽略索引垂直线路上路径的情况下,只需要2步(红色部分表示路径)。
下面说说Java中ConcurrentSkipListMap的数据结构。
(01) ConcurrentSkipListMap继承于AbstractMap类,也就意味着它是一个哈希表。
(02) Index是ConcurrentSkipListMap的内部类,它与“跳表中的索引相对应”。HeadIndex继承于Index,ConcurrentSkipListMap中含有一个HeadIndex的对象head,head是“跳表的表头”。
(03) Index是跳表中的索引,它包含“右索引的指针(right)”,“下索引的指针(down)”和“哈希表节点node”。node是Node的对象,Node也是ConcurrentSkipListMap中的内部类。
ConcurrentSkipListMap函数列表
// 构造一个新的空映射,该映射按照键的自然顺序进行排序。 ConcurrentSkipListMap() // 构造一个新的空映射,该映射按照指定的比较器进行排序。 ConcurrentSkipListMap(Comparator super K> comparator) // 构造一个新映射,该映射所包含的映射关系与给定映射包含的映射关系相同,并按照键的自然顺序进行排序。 ConcurrentSkipListMap(Map extends K,? extends V> m) // 构造一个新映射,该映射所包含的映射关系与指定的有序映射包含的映射关系相同,使用的顺序也相同。 ConcurrentSkipListMap(SortedMapm) // 返回与大于等于给定键的最小键关联的键-值映射关系;如果不存在这样的条目,则返回 null。 Map.Entry ceilingEntry(K key) // 返回大于等于给定键的最小键;如果不存在这样的键,则返回 null。 K ceilingKey(K key) // 从此映射中移除所有映射关系。 void clear() // 返回此 ConcurrentSkipListMap 实例的浅表副本。 ConcurrentSkipListMap clone() // 返回对此映射中的键进行排序的比较器;如果此映射使用键的自然顺序,则返回 null。 Comparator super K> comparator() // 如果此映射包含指定键的映射关系,则返回 true。 boolean containsKey(Object key) // 如果此映射为指定值映射一个或多个键,则返回 true。 boolean containsValue(Object value) // 返回此映射中所包含键的逆序 NavigableSet 视图。 NavigableSet descendingKeySet() // 返回此映射中所包含映射关系的逆序视图。 ConcurrentNavigableMap descendingMap() // 返回此映射中所包含的映射关系的 Set 视图。 Set > entrySet() // 比较指定对象与此映射的相等性。 boolean equals(Object o) // 返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。 Map.Entry firstEntry() // 返回此映射中当前第一个(最低)键。 K firstKey() // 返回与小于等于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。 Map.Entry floorEntry(K key) // 返回小于等于给定键的最大键;如果不存在这样的键,则返回 null。 K floorKey(K key) // 返回指定键所映射到的值;如果此映射不包含该键的映射关系,则返回 null。 V get(Object key) // 返回此映射的部分视图,其键值严格小于 toKey。 ConcurrentNavigableMap headMap(K toKey) // 返回此映射的部分视图,其键小于(或等于,如果 inclusive 为 true)toKey。 ConcurrentNavigableMap headMap(K toKey, boolean inclusive) // 返回与严格大于给定键的最小键关联的键-值映射关系;如果不存在这样的键,则返回 null。 Map.Entry higherEntry(K key) // 返回严格大于给定键的最小键;如果不存在这样的键,则返回 null。 K higherKey(K key) // 如果此映射未包含键-值映射关系,则返回 true。 boolean isEmpty() // 返回此映射中所包含键的 NavigableSet 视图。 NavigableSet keySet() // 返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。 Map.Entry lastEntry() // 返回映射中当前最后一个(最高)键。 K lastKey() // 返回与严格小于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。 Map.Entry lowerEntry(K key) // 返回严格小于给定键的最大键;如果不存在这样的键,则返回 null。 K lowerKey(K key) // 返回此映射中所包含键的 NavigableSet 视图。 NavigableSet navigableKeySet() // 移除并返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。 Map.Entry pollFirstEntry() // 移除并返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。 Map.Entry pollLastEntry() // 将指定值与此映射中的指定键关联。 V put(K key, V value) // 如果指定键已经不再与某个值相关联,则将它与给定值关联。 V putIfAbsent(K key, V value) // 从此映射中移除指定键的映射关系(如果存在)。 V remove(Object key) // 只有目前将键的条目映射到给定值时,才移除该键的条目。 boolean remove(Object key, Object value) // 只有目前将键的条目映射到某一值时,才替换该键的条目。 V replace(K key, V value) // 只有目前将键的条目映射到给定值时,才替换该键的条目。 boolean replace(K key, V oldValue, V newValue) // 返回此映射中的键-值映射关系数。 int size() // 返回此映射的部分视图,其键的范围从 fromKey 到 toKey。 ConcurrentNavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) // 返回此映射的部分视图,其键值的范围从 fromKey(包括)到 toKey(不包括)。 ConcurrentNavigableMap subMap(K fromKey, K toKey) // 返回此映射的部分视图,其键大于等于 fromKey。 ConcurrentNavigableMap tailMap(K fromKey) // 返回此映射的部分视图,其键大于(或等于,如果 inclusive 为 true)fromKey。 ConcurrentNavigableMap tailMap(K fromKey, boolean inclusive) // 返回此映射中所包含值的 Collection 视图。 Collection values()
下面从ConcurrentSkipListMap的添加,删除,获取这3个方面对它进行分析。
1. 添加
下面以put(K key, V value)为例,对ConcurrentSkipListMap的添加方法进行说明。
public V put(K key, V value) { if (value == null) throw new NullPointerException(); return doPut(key, value, false); }
实际上,put()是通过doPut()将key-value键值对添加到ConcurrentSkipListMap中的。
doPut()的源码如下:
private V doPut(K kkey, V value, boolean onlyIfAbsent) { Comparable super K> key = comparable(kkey); for (;;) { // 找到key的前继节点 Nodeb = findPredecessor(key); // 设置n为“key的前继节点的后继节点”,即n应该是“插入节点”的“后继节点” Node n = b.next; for (;;) { if (n != null) { Node f = n.next; // 如果两次获得的b.next不是相同的Node,就跳转到”外层for循环“,重新获得b和n后再遍历。 if (n != b.next) break; // v是“n的值” Object v = n.value; // 当n的值为null(意味着其它线程删除了n);此时删除b的下一个节点,然后跳转到”外层for循环“,重新获得b和n后再遍历。 if (v == null) { // n is deleted n.helpDelete(b, f); break; } // 如果其它线程删除了b;则跳转到”外层for循环“,重新获得b和n后再遍历。 if (v == n || b.value == null) // b is deleted break; // 比较key和n.key int c = key.compareTo(n.key); if (c > 0) { b = n; n = f; continue; } if (c == 0) { if (onlyIfAbsent || n.casValue(v, value)) return (V)v; else break; // restart if lost race to replace value } // else c < 0; fall through } // 新建节点(对应是“要插入的键值对”) Node z = new Node (kkey, value, n); // 设置“b的后继节点”为z if (!b.casNext(n, z)) break; // 多线程情况下,break才可能发生(其它线程对b进行了操作) // 随机获取一个level // 然后在“第1层”到“第level层”的链表中都插入新建节点 int level = randomLevel(); if (level > 0) insertIndex(z, level); return null; } } }
说明:doPut() 的作用就是将键值对添加到“跳表”中。
要想搞清doPut(),首先要弄清楚它的主干部分 ―― 我们先单纯的只考虑“单线程的情况下,将key-value添加到跳表中”,即忽略“多线程相关的内容”。它的流程如下:
第1步:找到“插入位置”。
即,找到“key的前继节点(b)”和“key的后继节点(n)”;key是要插入节点的键。
第2步:新建并插入节点。
即,新建节点z(key对应的节点),并将新节点z插入到“跳表”中(设置“b的后继节点为z”,“z的后继节点为n”)。
第3步:更新跳表。
即,随机获取一个level,然后在“跳表”的第1层~第level层之间,每一层都插入节点z;在第level层之上就不再插入节点了。若level数值大于“跳表的层次”,则新建一层。
主干部分“对应的精简后的doPut()的代码”如下(仅供参考):
private V doPut(K kkey, V value, boolean onlyIfAbsent) { Comparable super K> key = comparable(kkey); for (;;) { // 找到key的前继节点 Nodeb = findPredecessor(key); // 设置n为key的后继节点 Node n = b.next; for (;;) { // 新建节点(对应是“要被插入的键值对”) Node z = new Node (kkey, value, n); // 设置“b的后继节点”为z b.casNext(n, z); // 随机获取一个level // 然后在“第1层”到“第level层”的链表中都插入新建节点 int level = randomLevel(); if (level > 0) insertIndex(z, level); return null; } } }
理清主干之后,剩余的工作就相对简单了。主要是上面几步的对应算法的具体实现,以及多线程相关情况的处理!
2. 删除
下面以remove(Object key)为例,对ConcurrentSkipListMap的删除方法进行说明。
public V remove(Object key) { return doRemove(key, null); }
实际上,remove()是通过doRemove()将ConcurrentSkipListMap中的key对应的键值对删除的。
doRemove()的源码如下:
final V doRemove(Object okey, Object value) { Comparable super K> key = comparable(okey); for (;;) { // 找到“key的前继节点” Nodeb = findPredecessor(key); // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点) Node n = b.next; for (;;) { if (n == null) return null; // f是“当前节点n的后继节点” Node f = n.next; // 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。 if (n != b.next) // inconsistent read break; // 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。 Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } // 如果“前继节点b”被删除(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。 if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c < 0) return null; if (c > 0) { b = n; n = f; continue; } // 以下是c=0的情况 if (value != null && !value.equals(v)) return null; // 设置“当前节点n”的值为null if (!n.casValue(v, null)) break; // 设置“b的后继节点”为f if (!n.appendMarker(f) || !b.casNext(n, f)) findNode(key); // Retry via findNode else { // 清除“跳表”中每一层的key节点 findPredecessor(key); // Clean index // 如果“表头的右索引为空”,则将“跳表的层次”-1。 if (head.right == null) tryReduceLevel(); } return (V)v; } } }
说明:doRemove()的作用是删除跳表中的节点。
和doPut()一样,我们重点看doRemove()的主干部分,了解主干部分之后,其余部分就非常容易理解了。下面是“单线程的情况下,删除跳表中键值对的步骤”:
第1步:找到“被删除节点的位置”。
即,找到“key的前继节点(b)”,“key所对应的节点(n)”,“n的后继节点f”;key是要删除节点的键。
第2步:删除节点。
即,将“key所对应的节点n”从跳表中移除 -- 将“b的后继节点”设为“f”!
第3步:更新跳表。
即,遍历跳表,删除每一层的“key节点”(如果存在的话)。如果删除“key节点”之后,跳表的层次需要-1;则执行相应的操作!
主干部分“对应的精简后的doRemove()的代码”如下(仅供参考):
final V doRemove(Object okey, Object value) { Comparable super K> key = comparable(okey); for (;;) { // 找到“key的前继节点” Nodeb = findPredecessor(key); // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点) Node n = b.next; for (;;) { // f是“当前节点n的后继节点” Node f = n.next; // 设置“当前节点n”的值为null n.casValue(v, null); // 设置“b的后继节点”为f b.casNext(n, f); // 清除“跳表”中每一层的key节点 findPredecessor(key); // 如果“表头的右索引为空”,则将“跳表的层次”-1。 if (head.right == null) tryReduceLevel(); return (V)v; } } }
3. 获取
下面以get(Object key)为例,对ConcurrentSkipListMap的获取方法进行说明。
public V get(Object key) { return doGet(key); }
doGet的源码如下:
private V doGet(Object okey) { Comparable super K> key = comparable(okey); for (;;) { // 找到“key对应的节点” Noden = findNode(key); if (n == null) return null; Object v = n.value; if (v != null) return (V)v; } }
说明:doGet()是通过findNode()找到并返回节点的。
private NodefindNode(Comparable super K> key) { for (;;) { // 找到key的前继节点 Node b = findPredecessor(key); // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点) Node n = b.next; for (;;) { // 如果“n为null”,则跳转中不存在key对应的节点,直接返回null。 if (n == null) return null; Node f = n.next; // 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。 if (n != b.next) // inconsistent read break; Object v = n.value; // 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。 if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; // 若n是当前节点,则返回n。 int c = key.compareTo(n.key); if (c == 0) return n; // 若“节点n的key”小于“key”,则说明跳表中不存在key对应的节点,返回null if (c < 0) return null; // 若“节点n的key”大于“key”,则更新b和n,继续查找。 b = n; n = f; } } }
说明:findNode(key)的作用是在返回跳表中key对应的节点;存在则返回节点,不存在则返回null。
先弄清函数的主干部分,即抛开“多线程相关内容”,单纯的考虑单线程情况下,从跳表获取节点的算法。
第1步:找到“被删除节点的位置”。
根据findPredecessor()定位key所在的层次以及找到key的前继节点(b),然后找到b的后继节点n。
第2步:根据“key的前继节点(b)”和“key的前继节点的后继节点(n)”来定位“key对应的节点”。
具体是通过比较“n的键值”和“key”的大小。如果相等,则n就是所要查找的键。
ConcurrentSkipListMap示例
import java.util.*; import java.util.concurrent.*; /* * ConcurrentSkipListMap是“线程安全”的哈希表,而TreeMap是非线程安全的。 * * 下面是“多个线程同时操作并且遍历map”的示例 * (01) 当map是ConcurrentSkipListMap对象时,程序能正常运行。 * (02) 当map是TreeMap对象时,程序会产生ConcurrentModificationException异常。 * * @author skywang */ public class ConcurrentSkipListMapDemo1 { // TODO: map是TreeMap对象时,程序会出错。 //private static Mapmap = new TreeMap (); private static Map map = new ConcurrentSkipListMap (); public static void main(String[] args) { // 同时启动两个线程对map进行操作! new MyThread("a").start(); new MyThread("b").start(); } private static void printAll() { String key, value; Iterator iter = map.entrySet().iterator(); while(iter.hasNext()) { Map.Entry entry = (Map.Entry)iter.next(); key = (String)entry.getKey(); value = (String)entry.getValue(); System.out.print("("+key+", "+value+"), "); } System.out.println(); } private static class MyThread extends Thread { MyThread(String name) { super(name); } @Override public void run() { int i = 0; while (i++ < 6) { // “线程名” + "序号" String val = Thread.currentThread().getName()+i; map.put(val, "0"); // 通过“Iterator”遍历map。 printAll(); } } } }
(某一次)运行结果:
(a1, 0), (a1, 0), (b1, 0), (b1, 0), (a1, 0), (b1, 0), (b2, 0), (a1, 0), (a1, 0), (a2, 0), (a2, 0), (b1, 0), (b1, 0), (b2, 0), (b2, 0), (b3, 0), (b3, 0), (a1, 0), (a2, 0), (a3, 0), (a1, 0), (b1, 0), (a2, 0), (b2, 0), (a3, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (a1, 0), (b3, 0), (a2, 0), (b4, 0), (a3, 0), (a1, 0), (a4, 0), (a2, 0), (b1, 0), (a3, 0), (b2, 0), (a4, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0), (b3, 0), (a1, 0), (b4, 0), (a2, 0), (b5, 0), (a3, 0), (a1, 0), (a4, 0), (a2, 0), (a5, 0), (a3, 0), (b1, 0), (a4, 0), (b2, 0), (a5, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0), (b3, 0), (b6, 0), (b4, 0), (a1, 0), (b5, 0), (a2, 0), (b6, 0), (a3, 0), (a4, 0), (a5, 0), (a6, 0), (b1, 0), (b2, 0), (b3, 0), (b4, 0), (b5, 0), (b6, 0),
结果说明:
示例程序中,启动两个线程(线程a和线程b)分别对ConcurrentSkipListMap进行操作。以线程a而言,它会先获取“线程名”+“序号”,然后将该字符串作为key,将“0”作为value,插入到ConcurrentSkipListMap中;接着,遍历并输出ConcurrentSkipListMap中的全部元素。 线程b的操作和线程a一样,只不过线程b的名字和线程a的名字不同。
当map是ConcurrentSkipListMap对象时,程序能正常运行。如果将map改为TreeMap时,程序会产生ConcurrentModificationException异常。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。