Jdk1.6 JUC源码解析(1)-atomic-AtomicXXX
作者:大飞
功能简介:
- 原子量和普通变量相比,主要体现在读写的线程安全上。对原子量的是原子的(比如多线程下的共享变量i++就不是原子的),由CAS操作保证原子性。对原子量的读可以读到最新值,由volatile关键字来保证可见性。
- 原子量多用于数据统计(如接口调用次数)、一些序列生成(多线程环境下)以及一些同步数据结构中。
源码分析:
- 首先,原子量的一些较底层的操作都是来自sun.misc.Unsafe类,所以原子量内部有一个Unsafe的静态引用。
private static final Unsafe unsafe = Unsafe.getUnsafe();
在openJdk代码中可以找到这个类,目录openJdk的jdk/share/classes/sun/misc/。
这个类里面大多数方法都是native的,方法实现可以在openJdk的hotspot/share/vm/prims/unsafe.cpp里面找到。
- 接下来,先看下AtomicInteger的源码。
在AtomicInteger源码中,由内部的一个int域来保存值:
private volatile int value;注意到这个int域由volatile关键字修饰,可以保证可见性。
细节:volatile怎么保证可见性呢?对于被volatile修饰的域来说,对域进行的写入操作,在指令层面会在必要的时候(多核CPU)加入内存屏障(如:lock addl $0x0),这个内存屏障的作用是令本次写操作刷回主存,同时使其他CPU的cacheline中相应数据失效。所以当其他CPU需要访问相应数据的时候,会到主存中访问,从而保证了多线程环境下相应域的可见性。
接下来看一下CAS操作,AtomicInteger中的CAS操作体现在方法compareAndSet。它的实现在unsafe.cpp里面:
/* * Implementation of class sun.misc.Unsafe */ ... UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); return (jint)(Atomic::cmpxchg(x, addr, e)) == e; UNSAFE_END这里调用了Atomic的cmpxchg方法,继续找一下。这个方法定义在hotspot/share/vm/runtime/atomic.hpp中,实现在hotspot/share/vm/runtime/atomic.cpp中,最终实现取决于底层OS,比如linux x86,实现内联在hotspot部分代码os_cpu/linux_x86/vm/atomic_linux_x86.inline.hpp:
// Adding a lock prefix to an instruction on MP machine #define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: " ... inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { int mp = os::is_MP(); __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value; }从上面的代码中可以看到,如果是CPU是多核(multi processors)的话,会添加一个lock;前缀,这个lock;前缀也是内存屏障,它的作用是在执行后面指令的过程中锁总线(或者是锁cacheline),保证一致性。后面的指令cmpxchgl就是x86的比较并交换指令了。
接下来有一个和compareAndSet类似的方法,weakCompareAndSet。
从注释看,这个方法会发生fail spuriously(伪失败),而且不保证(指令)顺序,只能在一些特性场景(一些计数和统计)下替换compareAndSet。但从方法实现上看和compareAndSet没什么区别:
/** * Atomically sets the value to the given updated value * if the current value {@code ==} the expected value. * *但还是应该按照API的说明来使用这两个方法,以防未来方法内部(实现或者底层内部机制)发生变化。May fail spuriously * and does not provide ordering guarantees, so is only rarely an * appropriate alternative to {@code compareAndSet}. * * @param expect the expected value * @param update the new value * @return true if successful. */ public final boolean weakCompareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
其余的大多数方法都是基于compareAndSet方法来实现的,来看其中一个,incrementAndGet方法:
/** * Atomically increments by one the current value. * * @return the updated value */ public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } }
这个方法也体现了CAS一般是使用风格-CAS Loop,不断重试,直到成功。
当然,这也不是绝对的,JVM底层完全可以用更好的方式也替换这些方法,比如使用内联的lock;xadd就会比cmpxchg指令更好一些。
/** * Eventually sets to the given value. * * @param newValue the new value * @since 1.6 */ public final void lazySet(int newValue) { unsafe.putOrderedInt(this, valueOffset, newValue); }
看下unsafe.cpp中putOrderedInt方法的实现:
{CC"putOrderedInt", CC"("OBJ"JI)V", FN_PTR(Unsafe_SetOrderedInt)}, ... // The non-intrinsified versions of setOrdered just use setVolatile UNSAFE_ENTRY(void, Unsafe_SetOrderedInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint x)) UnsafeWrapper("Unsafe_SetOrderedInt"); SET_FIELD_VOLATILE(obj, offset, jint, x); UNSAFE_END注:上面有句注释,说明这只是一个非内联的setOrdered方法的实现,使用了setVolatile(和setVolatile一样的效果)。
其中,SET_FIELD_VOLATILE的定义如下:
#define SET_FIELD_VOLATILE(obj, offset, type_name, x) \ oop p = JNIHandles::resolve(obj); \ OrderAccess::release_store_fence((volatile type_name*)index_oop_from_field_offset_long(p, offset), x);在hotspot/src/os_cpu/linux_x86/vm/orderAccess_linux_x86.inline.hpp找到了这个方法的内联实现。(hotspot/src/share/vm/runtime/orderAccess.hpp这个头文件里面的注释值得留意一下):
inline void OrderAccess::release_store_fence(volatile jint* p, jint v) { __asm__ volatile ( "xchgl (%2),%0" : "=r" (v) : "0" (v), "r" (p) : "memory"); }可见,这里是通过xchgl这个指令来实现的setOrdered。
但是,上面只是非内联的实现,我们看下内联的实现是什么样的。
在hotspot/src/share/vm/classfile/vmSymbols.hpp中有如下代码:
do_intrinsic(_putOrderedInt, sun_misc_Unsafe, putOrderedInt_name, putOrderedInt_signature, F_RN)然后找到hotspot/src/share/vm/opto/library_call.cpp中找到相应实现:
case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT); ... bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) { // This is another variant of inline_unsafe_access, differing in // that it always issues store-store ("release") barrier and ensures // store-atomicity (which only matters for "long"). if (callee()->is_static()) return false; // caller must have the capability! ...//省略不重要的部分 insert_mem_bar(Op_MemBarRelease); insert_mem_bar(Op_MemBarCPUOrder); // Ensure that the store is atomic for longs: bool require_atomic_access = true; Node* store; if (type == T_OBJECT) // reference stores need a store barrier. store = store_oop_to_unknown(control(), base, adr, adr_type, val, type); else { store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access); } insert_mem_bar(Op_MemBarCPUOrder); return true; }我们看到这个方法里在保存动作的前后,有3个地方插入了内存屏障。
再看下hotspot/src/cpu/x86/vm/x86_64.ad:
instruct membar_release() %{ match(MemBarRelease); ins_cost(400); size(0); format %{ "MEMBAR-release ! (empty encoding)" %} ins_encode( ); ins_pipe(empty); %} ... instruct membar_volatile(eFlagsReg cr) %{ match(MemBarVolatile); effect(KILL cr); ins_cost(400); format %{ $$template if (os::is_MP()) { $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile" } else { $$emit$$"MEMBAR-volatile ! (empty encoding)" } %} ins_encode %{ __ membar(Assembler::StoreLoad); %} ins_pipe(pipe_slow); %}可见,除了membar_volatile中会添加LOCK ADDL这些指令,其他的貌似没什么卵用。 所以上面那3个insert_mem_bar也相当于没有加任何内存屏障。在这种情况下,lazySet就相当于对一个普通域的写操作喽。
- 再看下AtomicBoolean的源码。
AtomicBoolean内部是用一个int域来表示布尔状态,1表示true;0表示false:
private volatile int value; /** * Creates a new {@code AtomicBoolean} with the given initial value. * * @param initialValue the initial value */ public AtomicBoolean(boolean initialValue) { value = initialValue ? 1 : 0; }CAS、lazySet方法也都分别调用unsafe的compareAndSwapInt和putOrderedInt,上面分析过了。
- 继续看下AtomicLong的源码。
AtomicLong内部是用一个long域来保存值:
/** * Records whether the underlying JVM supports lockless * compareAndSwap for longs. While the Unsafe.compareAndSwapLong * method works in either case, some constructions should be * handled at Java level to avoid locking user-visible locks. */ static final boolean VM_SUPPORTS_LONG_CAS = VMSupportsCS8(); /** * Returns whether underlying JVM supports lockless CompareAndSet * for longs. Called only once and cached in VM_SUPPORTS_LONG_CAS. */ private static native boolean VMSupportsCS8(); static { try { valueOffset = unsafe.objectFieldOffset (AtomicLong.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile long value;这里注意到,AtomicLong中还提供了一个包内可见的静态域VM_SUPPORTS_LONG_CAS来表示底层是否支持Long类型(8字节)的lockless CAS操作。
AtomicLong内部整体结构和AtomicInteger类似,主要来看下内部使用的unsafe的方法有什么不同,首先CAS操作使用了unsafe的compareAndSwapLong方法:
/** * Atomically sets the value to the given updated value * if the current value {@code ==} the expected value. * * @param expect the expected value * @param update the new value * @return true if successful. False return indicates that * the actual value was not equal to the expected value. */ public final boolean compareAndSet(long expect, long update) { return unsafe.compareAndSwapLong(this, valueOffset, expect, update); }在unsafe.cpp中找到实现:
{CC"compareAndSwapLong", CC"("OBJ"J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)}, ... UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) UnsafeWrapper("Unsafe_CompareAndSwapLong"); Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); if (VM_Version::supports_cx8()) return (jlong)(Atomic::cmpxchg(x, addr, e)) == e; else { jboolean success = false; ObjectLocker ol(p, THREAD); if (*addr == e) { *addr = x; success = true; } return success; } UNSAFE_END从实现中可以看到,如果平台不支持8字节的CAS操作,就会加锁然后进行设置操作;如果支持,就会调用Atomic::cmpxchg方法,方法实现可以参考具体平台内联代码hotspot/os_cpu/linux_x86/vm/atomic_linux_x86.inline.hpp:
// Adding a lock prefix to an instruction on MP machine #define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: " inline jlong Atomic::cmpxchg (jlong exchange_value, volatile jlong* dest, jlong compare_value) { bool mp = os::is_MP(); __asm__ __volatile__ (LOCK_IF_MP(%4) "cmpxchgq %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value; }其实就是(多核情况下带lock前缀的)cmpxchgq指令。
然后看一下lazySet中使用到的unsafe的putOrderedLong方法。
/** * Eventually sets to the given value. * * @param newValue the new value * @since 1.6 */ public final void lazySet(long newValue) { unsafe.putOrderedLong(this, valueOffset, newValue); }同样在unsafe.cpp中可以找到该方法的实现:
{CC"putOrderedLong", CC"("OBJ"JJ)V", FN_PTR(Unsafe_SetOrderedLong)}, ... UNSAFE_ENTRY(void, Unsafe_SetOrderedLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) UnsafeWrapper("Unsafe_SetOrderedLong"); #if defined(SPARC) || defined(X86) // Sparc and X86 have atomic jlong (8 bytes) instructions SET_FIELD_VOLATILE(obj, offset, jlong, x); #else // Keep old code for platforms which may not have atomic long (8 bytes) instructions { if (VM_Version::supports_cx8()) { SET_FIELD_VOLATILE(obj, offset, jlong, x); } else { Handle p (THREAD, JNIHandles::resolve(obj)); jlong* addr = (jlong*)(index_oop_from_field_offset_long(p(), offset)); ObjectLocker ol(p, THREAD); *addr = x; } } #endif UNSAFE_END从实现上看,如果平台是SPARC或者X86或者平台支持8字节CAS,就相当于执行了一个volatile write;否则,加锁写。
当然还要看一下内联方法,在hotspot/src/share/vm/classfile/vmSymbols.hpp中有如下代码:
do_intrinsic(_putOrderedLong, sun_misc_Unsafe, putOrderedLong_name, putOrderedLong_signature, F_RN) \然后找到hotspot/src/share/vm/opto/library_call.cpp中找到相应实现。
case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG); ... bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) { // This is another variant of inline_unsafe_access, differing in // that it always issues store-store ("release") barrier and ensures // store-atomicity (which only matters for "long"). if (callee()->is_static()) return false; // caller must have the capability! ...//忽略不重要部分 // Ensure that the store is atomic for longs: bool require_atomic_access = true; Node* store; if (type == T_OBJECT) // reference stores need a store barrier. store = store_oop_to_unknown(control(), base, adr, adr_type, val, type); else { store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access); } insert_mem_bar(Op_MemBarCPUOrder); return true; }从代码的注释上可以发现,require_atomic_access设置为true,为了保证long写操作的原子性。继续跟代码,找到hotspot/src/share/vm/opto/graphKit.cpp:
Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt, int adr_idx, bool require_atomic_access) { assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); const TypePtr* adr_type = NULL; debug_only(adr_type = C->get_adr_type(adr_idx)); Node *mem = memory(adr_idx); Node* st; if (require_atomic_access && bt == T_LONG) { st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val); } else { st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt); } st = _gvn.transform(st); set_memory(st, adr_idx); // Back-to-back stores can only remove intermediate store with DU info // so push on worklist for optimizer. if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address)) record_for_igvn(st); return st; }可见,这里会针对long做原子写操作(这里的原子操作应该指的是将long的高4字节和低4字节的操作合并成一个原子操作,比如某些平台不支持非volatile的long/double域的原子操作)。
- 最后看下AtomicReference的源码。
AtomicReference内部构成和其他原子量基本一致,区别只是这个类内部保存一个对象引用。
public class AtomicReference重点看一下内部调用的unsafe的compareAndSwapObject和putOrderedObject方法,先看一下compareAndSwapObject:implements java.io.Serializable { private static final long serialVersionUID = -1848883965231344442L; private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset; static { try { valueOffset = unsafe.objectFieldOffset (AtomicReference.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile V value;
/** * Atomically sets the value to the given updated value * if the current value {@code ==} the expected value. * @param expect the expected value * @param update the new value * @return true if successful. False return indicates that * the actual value was not equal to the expected value. */ public final boolean compareAndSet(V expect, V update) { return unsafe.compareAndSwapObject(this, valueOffset, expect, update); }在unsafe.cpp中可以找到实现:
{CC"compareAndSwapObject", CC"("OBJ"J"OBJ""OBJ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, ... UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) UnsafeWrapper("Unsafe_CompareAndSwapObject"); oop x = JNIHandles::resolve(x_h); oop e = JNIHandles::resolve(e_h); oop p = JNIHandles::resolve(obj); HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset); if (UseCompressedOops) { update_barrier_set_pre((narrowOop*)addr, e); } else { update_barrier_set_pre((oop*)addr, e); } oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e); jboolean success = (res == e); if (success) update_barrier_set((void*)addr, x); return success; UNSAFE_END可以看到里面实际上是执行oopDesc::atomic_compare_exchange_oop这个方法。找到hotspot/src/share/vm/oops/oop.inline.hpp中该方法实现:
inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, volatile HeapWord *dest, oop compare_value) { if (UseCompressedOops) { // encode exchange and compare value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop cmp = encode_heap_oop(compare_value); narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); // decode old from T to oop return decode_heap_oop(old); } else { return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); } }cmpxchg之前分析过,看看cmpxche_ptr,找到hotspot/os_cpu/linux_x86/vm/atomic_linux_x86.inline.hpp中实现:
inline intptr_t Atomic::cmpxchg_ptr(intptr_t exchange_value, volatile intptr_t* dest, intptr_t compare_value) { return (intptr_t)cmpxchg((jlong)exchange_value, (volatile jlong*)dest, (jlong)compare_value); } inline jlong Atomic::cmpxchg (jlong exchange_value, volatile jlong* dest, jlong compare_value) { bool mp = os::is_MP(); __asm__ __volatile__ (LOCK_IF_MP(%4) "cmpxchgq %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value; }就是(多核下带lock前缀的)cmpxchgq命令了。
putOrderedObject方法按之前几篇的查找方法,会发现内联之后,相当于一个普通写操作了。
OK,源码分析到此结束!
参考资料:
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://stackoverflow.com/questions/2443239/how-can-weakcompareandset-fail-spuriously-if-it-is-implemented-exactly-like-comp
http://faydoc.tripod.com/cpu/lock.htm
http://ifeve.com/juc-atomic-class-lazyset-que/
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6275329
http://stackoverflow.com/questions/4232660/which-is-a-better-write-barrier-on-x86-lockaddl-or-xchgl
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=7023898