一、前言
如果不了解virtual dom,要理解diff的过程是比较困难的。
虚拟dom对应的是真实dom, 使用document.CreateElement 和 document.CreateTextNode创建的就是真实节点。
vue2.0才开始使用了virtual dom,有向react靠拢的意思。
文章首发地址:https://www.mwcxs.top/page/56...
二、虚拟dom
首先,我们先看一下真实的dom,打印出一个空元素的第一层属性,可以看到标准让元素实现的东西太多了。
如果每次都重新生成新的元素,对性能是巨大的浪费。
var mydiv = document.createElement('div');
for(var item in mydiv){
console.log(item );
}
到底什么是virtual dom呢?通俗易懂的来说就是用一个简单的对象去代替复杂的dom对象。
举个简单的例子,我们在body里插入一个class为a的div。
var mydiv = document.createElement('div');
mydiv.className = 'a';
document.body.appendChild(mydiv);
对于这个div我们可以用一个简单的对象mydivVirtual代表它,它存储了对应dom的一些重要参数,在改变dom之前,会先比较相应虚拟dom的数据,如果需要改变,才会将改变应用到真实dom上。
//伪代码
var mydivVirtual = {
tagName: 'DIV',
className: 'a'
};
var newmydivVirtual = {
tagName: 'DIV',
className: 'b'
}
if(mydivVirtual.tagName !== newmydivVirtual.tagName || mydivVirtual.className !== newmydivVirtual.className){
change(mydiv)
}
// 会执行相应的修改 mydiv.className = 'b';
//最后
为什么不直接修改dom而需要加一层virtual dom呢?
很多时候手工优化dom确实会比virtual dom效率高,对于比较简单的dom结构用手工优化没有问题,但当页面结构很庞大,结构很复杂时,手工优化会花去大量时间,而且可维护性也不高,不能保证每个人都有手工优化的能力。至此,virtual dom的解决方案应运而生。
virtual dom是“解决过多的操作dom影响性能”的一种解决方案。
virtual dom很多时候都不是最优的操作,但它具有普适性,在效率、可维护性之间达平衡。
virutal dom的意义:
1、提供一种简单对象去代替复杂的dom对象,从而优化dom操作
2、提供一个中间层,js去写ui,ios安卓之类的负责渲染,就像reactNative一样。
三、diff算法
vue的diff位于patch.js文件中,该算法来源于snabbdom,复杂度为O(n)。了解diff过程可以让我们更高效的使用框架。
一篇相当经典的文章React’s diff algorithm中的图,react的diff其实和vue的diff大同小异。所以这张图能很好的解释过程。
特点:1、比较只会在同层级进行, 不会跨层级比较。
举个形象的例子
aoy
diff
aoy
diff
我们可能期望将直接移动到 的后边,这是最优的操作。 但是实际的diff操作是:1、移除 里的;2、在创建一个新的插到 的后边。 vue的diff位于patch.js文件中,diff的过程就是调用patch函数,就像打补丁一样修改真实dom。 patch函数有两个参数,vnode和oldVnode,也就是新旧两个虚拟节点。 在这之前,我们先了解完整的vnode都有什么属性,举个一个简单的例子: // body下的 el属性引用的是此 virtual dom对应的真实dom,patch的vnode参数的el最初是null,因为patch之前它还没有对应的真实dom。 patch的第一部分 sameVnode函数就是看这两个节点是否值得比较,代码相当简单: 两个vnode的key和sel相同才去比较它们,比如p和span,div.classA和div.classB都被认为是不同结构而不去比较它们。 如果值得比较会执行patchVnode(oldVnode, vnode),稍后会详细讲patchVnode函数。 当节点不值得比较,进入else中 过程如下: 取得oldvnode.el的父节点,parentEle是真实dom patch最后会返回vnode,vnode和进入patch之前的不同在哪? var oldVnode = patch (oldVnode, vnode) 两个节点值得比较时,会调用patchVnode函数 const el = vnode.el = oldVnode.el ,让vnode.el引用到现在的真实dom,当el修改时,vnode.el会同步变化。 节点的比较有5种情况: 1、if (oldVnode === vnode),他们的引用一致,可以认为没有变化。 2、if(oldVnode.text !== null && vnode.text !== null && oldVnode.text !== vnode.text),文本节点的比较,需要修改,则会调用Node.textContent = vnode.text。 3、if( oldCh && ch && oldCh !== ch ), 两个节点都有子节点,而且它们不一样,这样我们会调用updateChildren函数比较子节点,这是diff的核心,后边会讲到。 4、else if (ch),只有新的节点有子节点,调用createEle(vnode),vnode.el已经引用了老的dom节点,createEle函数会在老dom节点上添加子节点。 5、else if (oldCh),新节点没有子节点,老节点有子节点,直接删除老节点。 直接看源码可能比较难以滤清其中的关系,我们通过图来看一下
首先,在新老两个VNode节点的左右头尾两侧都有一个变量标记,在遍历过程中这几个变量都会向中间靠拢。 当oldStartIdx <= oldEndIdx或者newStartIdx <= newEndIdx时结束循环。 索引与VNode节点的对应关系: oldStartIdx => oldStartVnode oldEndIdx => oldEndVnode newStartIdx => newStartVnode newEndIdx => newEndVnode 在遍历中,如果存在key,并且满足sameVnode,会将该DOM节点进行复用,否则则会创建一个新的DOM节点。 首先,oldStartVnode、oldEndVnode与newStartVnode、newEndVnode两两比较一共有2*2=4种比较方法。 当新老VNode节点的start或者end满足sameVnode时,也就是sameVnode(oldStartVnode, newStartVnode)或者sameVnode(oldEndVnode, newEndVnode),直接将该VNode节点进行patchVnode即可。
如果oldStartVnode与newEndVnode满足sameVnode,即sameVnode(oldStartVnode, newEndVnode)。 这时候说明oldStartVnode已经跑到了oldEndVnode后面去了,进行patchVnode的同时还需要将真实DOM节点移动到oldEndVnode的后面。
如果oldEndVnode与newStartVnode满足sameVnode,即sameVnode(oldEndVnode, newStartVnode)。 这说明oldEndVnode跑到了oldStartVnode的前面,进行patchVnode的同时真实的DOM节点移动到了oldStartVnode的前面。
如果以上情况均不符合,则通过createKeyToOldIdx会得到一个oldKeyToIdx,里面存放了一个key为旧的VNode,value为对应index序列的哈希表。从这个哈希表中可以找到是否有与newStartVnode一致key的旧的VNode节点,如果同时满足sameVnode,patchVnode的同时会将这个真实DOM(elmToMove)移动到oldStartVnode对应的真实DOM的前面。
当然也有可能newStartVnode在旧的VNode节点找不到一致的key,或者是即便key相同却不是sameVnode,这个时候会调用createElm创建一个新的DOM节点。
到这里循环已经结束了,那么剩下我们还需要处理多余或者不够的真实DOM节点。
因为新加的在层级2,旧的在层级3,属于不同层级的比较。四、源码分析
4.1patch方法
function patch (oldVnode, vnode) {
if (sameVnode(oldVnode, vnode)) {
patchVnode(oldVnode, vnode)
} else {
const oEl = oldVnode.el
let parentEle = api.parentNode(oEl)
createEle(vnode)
if (parentEle !== null) {
api.insertBefore(parentEle, vnode.el, api.nextSibling(oEl))
api.removeChild(parentEle, oldVnode.el)
oldVnode = null
}
}
return vnode
}
{
el: div //对真实的节点的引用,本例中就是document.querySelector('#id.classA')
tagName: 'DIV', //节点的标签
sel: 'div#v.classA' //节点的选择器
data: null, // 一个存储节点属性的对象,对应节点的el[prop]属性,例如onclick , style
children: [], //存储子节点的数组,每个子节点也是vnode结构
text: null, //如果是文本节点,对应文本节点的textContent,否则为null
}
if (sameVnode(oldVnode, vnode)) {
patchVnode(oldVnode, vnode)
}
function sameVnode(oldVnode, vnode){
return vnode.key === oldVnode.key && vnode.sel === oldVnode.sel
}
else {
const oEl = oldVnode.el
let parentEle = api.parentNode(oEl)
createEle(vnode)
if (parentEle !== null) {
api.insertBefore(parentEle, vnode.el, api.nextSibling(oEl))
api.removeChild(parentEle, oldVnode.el)
oldVnode = null
}
}
createEle(vnode)会为vnode创建它的真实dom,令vnode.el =真实dom
parentEle将新的dom插入,移除旧的dom当不值得比较时,新节点直接把老节点整个替换了
最后return vnode
没错,就是vnode.el,唯一的改变就是之前vnode.el = null, 而现在它引用的是对应的真实dom。
至此完成一个patch过程。4.2patchNode方法
patchVnode (oldVnode, vnode) {
const el = vnode.el = oldVnode.el
let i, oldCh = oldVnode.children, ch = vnode.children
if (oldVnode === vnode) return
if (oldVnode.text !== null && vnode.text !== null && oldVnode.text !== vnode.text) {
api.setTextContent(el, vnode.text)
}else {
updateEle(el, vnode, oldVnode)
if (oldCh && ch && oldCh !== ch) {
updateChildren(el, oldCh, ch)
}else if (ch){
createEle(vnode) //create el's children dom
}else if (oldCh){
api.removeChildren(el)
}
}
}
4.3updateChildren方法
updateChildren (parentElm, oldCh, newCh) {
let oldStartIdx = 0, newStartIdx = 0
let oldEndIdx = oldCh.length - 1
let oldStartVnode = oldCh[0]
let oldEndVnode = oldCh[oldEndIdx]
let newEndIdx = newCh.length - 1
let newStartVnode = newCh[0]
let newEndVnode = newCh[newEndIdx]
let oldKeyToIdx
let idxInOld
let elmToMove
let before
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
if (oldStartVnode == null) { //对于vnode.key的比较,会把oldVnode = null
oldStartVnode = oldCh[++oldStartIdx]
}else if (oldEndVnode == null) {
oldEndVnode = oldCh[--oldEndIdx]
}else if (newStartVnode == null) {
newStartVnode = newCh[++newStartIdx]
}else if (newEndVnode == null) {
newEndVnode = newCh[--newEndIdx]
}else if (sameVnode(oldStartVnode, newStartVnode)) {
patchVnode(oldStartVnode, newStartVnode)
oldStartVnode = oldCh[++oldStartIdx]
newStartVnode = newCh[++newStartIdx]
}else if (sameVnode(oldEndVnode, newEndVnode)) {
patchVnode(oldEndVnode, newEndVnode)
oldEndVnode = oldCh[--oldEndIdx]
newEndVnode = newCh[--newEndIdx]
}else if (sameVnode(oldStartVnode, newEndVnode)) {
patchVnode(oldStartVnode, newEndVnode)
api.insertBefore(parentElm, oldStartVnode.el, api.nextSibling(oldEndVnode.el))
oldStartVnode = oldCh[++oldStartIdx]
newEndVnode = newCh[--newEndIdx]
}else if (sameVnode(oldEndVnode, newStartVnode)) {
patchVnode(oldEndVnode, newStartVnode)
api.insertBefore(parentElm, oldEndVnode.el, oldStartVnode.el)
oldEndVnode = oldCh[--oldEndIdx]
newStartVnode = newCh[++newStartIdx]
}else {
// 使用key时的比较
if (oldKeyToIdx === undefined) {
oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx) // 有key生成index表
}
idxInOld = oldKeyToIdx[newStartVnode.key]
if (!idxInOld) {
api.insertBefore(parentElm, createEle(newStartVnode).el, oldStartVnode.el)
newStartVnode = newCh[++newStartIdx]
}
else {
elmToMove = oldCh[idxInOld]
if (elmToMove.sel !== newStartVnode.sel) {
api.insertBefore(parentElm, createEle(newStartVnode).el, oldStartVnode.el)
}else {
patchVnode(elmToMove, newStartVnode)
oldCh[idxInOld] = null
api.insertBefore(parentElm, elmToMove.el, oldStartVnode.el)
}
newStartVnode = newCh[++newStartIdx]
}
}
}
if (oldStartIdx > oldEndIdx) {
before = newCh[newEndIdx + 1] == null ? null : newCh[newEndIdx + 1].el
addVnodes(parentElm, before, newCh, newStartIdx, newEndIdx)
}else if (newStartIdx > newEndIdx) {
removeVnodes(parentElm, oldCh, oldStartIdx, oldEndIdx)
}
}