为什么Java String哈希乘数为31?

阅读更多

发表文章之后,发现很多图片显示不了,请阅读我的公众号文章,以获得本文最佳体验:

为什么Java String哈希乘数为31?

 

前面简单介绍了[ 经典的Times 33 哈希算法 ],这篇我们通过分析Java 1.8 String类的哈希算法,继续聊聊对乘数的选择。

String类的hashCode()源码

/** Cache the hash code for the string */
private int hash;

/** 
Returns a hash code for this string. The hash code for a String object is computed as 
 s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
using int arithmetic, where s[i] is the ith character of the string, 
n is the length of the string, and ^ indicates exponentiation. 
(The hash value of the empty string is zero.) 
*/

public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        char val[] = value;

        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        }
        hash = h;
    }
    return h;
}

可以看到,String的哈希算法也是采用了Times 33的思路,只不过乘数选择了31。

其中

  • hash默认值为0.
  • 判断h == 0是为了缓存哈希值.
  • 判断value.length > 0是因为空字符串的哈希值为0.

用数据说话

前一篇我们提到:

这个神奇的数字33,为什么用来计算哈希的效果会比其他许多常数(无论是否为质数)更有效,并没有人给过足够充分的解释。因此,Ralf S. Engelschall尝试通过自己的方法解释其原因。通过对1到256中的每个数字进行测试,发现偶数的哈希效果非常差,根据用不了。而剩下的128个奇数,除了1之外,效果都差不多。这些奇数在分布上都表现不错,对哈希表的填充覆盖大概在86%。

从哈希效果来看(Chi^2应该是指卡方分布),虽然33并不一定是最好的数值。但17、31、33、63、127和129等相对其他的奇数的一个很明显的优势是,由于这些奇数与16、32、64、128只相差1,可以通过移位(如1 << 4 = 16)和加减1来代替乘法,速度更快

那么接下来,我们通过实验数据,来看看偶数、奇数,以及17、31、33、63、127和129等这些神奇数字的哈希效果,来验证Ralf S. Engelschall的说法。

环境准备

个人笔记本,Windows 7操作系统,酷睿i5双核64位CPU。

测试数据:CentOS Linux release 7.5.1804的/usr/share/dict/words字典文件对应的所有单词。

由于CentOS上找不到该字典文件,通过yum -y install words进行了安装。

/usr/share/dict/words共有479828个单词,该文件链接的原始文件为linux.words。

计算冲突率与哈希耗时

测试代码

/**
 * 以1-256为乘数,分别计算/usr/share/dict/words所有单词的哈希冲突率、总耗时.
 * 
 * @throws IOException
 */

@Test
public void testHash() throws IOException {
    List words = getWords();

    System.out.println();
    System.out.println("multiplier, conflictSize, conflictRate, timeCost, listSize, minHash, maxHash");
    for (int i = 1; i <=256; i++) {
        computeConflictRate(words, i);
    }
}

/**
 * 读取/usr/share/dict/words所有单词
 * 
 * @return
 * @throws IOException
 */

private List getWords() throws IOException {
    // read file
    InputStream is = HashConflictTester.class.getClassLoader().getResourceAsStream("linux.words");
    List lines = IOUtils.readLines(is, "UTF-8");
    return lines;
}

/**
 * 计算冲突率
 * 
 * @param lines
 */

private void computeConflictRate(List lines, int multiplier) {
    // compute hash
    long startTime = System.currentTimeMillis();
    List hashList = computeHashes(lines, multiplier);
    long timeCost = System.currentTimeMillis() - startTime;

    // find max and min hash
    Comparator comparator = (x,y) -> x > y ? 1 : (x < y ? -1 : 0);
    int maxHash = hashList.parallelStream().max(comparator).get();
    int minHash = hashList.parallelStream().min(comparator).get();

    // hash set
    Set hashSet = hashList.parallelStream().collect(Collectors.toSet());

    int conflictSize = lines.size() - hashSet.size();
    float conflictRate = conflictSize * 1.0f / lines.size();
    System.out.println(String.format("%s, %s, %s, %s, %s, %s, %s", multiplier, conflictSize, conflictRate, timeCost, lines.size(), minHash, maxHash));
}

/**
 * 根据乘数计算hash值
 * 
 * @param lines
 * @param multiplier
 * @return
 */

private List computeHashes(List lines, int multiplier) {
    Function hashFunction = x -> {
        int hash = 0;
        for (int i = 0; i < x.length(); i++) {
            hash = (multiplier * hash) + x.charAt(i);
        }
        return hash;
    };
    return lines.parallelStream().map(hashFunction).collect(Collectors.toList());
}

执行测试方法testHash(),稍等片刻后,我们将得到一份测试报告。

哈希冲突率降序排序

通过对哈希冲突率进行降序排序,得到下面的结果。

结果分析

  • 偶数的冲突率基本都很高,只有少数例外。
  • 较小的乘数,冲突率也比较高,如1至20。
  • 乘数1、2、256的分布不均匀。Java哈希值为32位int类型,取值范围为[-2147483648,2147483647]。

哈希冲突率降序排序

哈希耗时降序排序

我们再对冲突数量为1000以内的乘数进行分析,通过对执行耗时进行降序排序,得到下面的结果。

分析17、31、33、63、127和129

  • 17在上一轮已经出局。
  • 63执行计算耗时比较长。
  • 31、33的冲突率分别为0.13%、0.14%,执行耗时分别为10、11,实时基本相当
  • 127、129的冲突率分别为0.01%、0.004%,执行耗时分别为9、10

总体上看,129执行耗时低,冲突率也是最小的,似乎先择它更为合适?

哈希耗时降序排序

哈希分布情况

将整个哈希空间[-2147483648,2147483647]分为128个分区,分别统计每个分区的哈希值数量,以此来观察各个乘数的分布情况。每个分区的哈希桶位为2^32 / 128 = 33554432。

之所以通过分区来统计,主要是因为单词数太多,尝试过画成图表后密密麻麻的,无法直观的观察对比。

计算哈希分布代码

@Test
public void testHashDistribution() throws IOException {
    int[] multipliers = {21731336312773133237161};
    List words = getWords();
    for (int multiplier : multipliers) {
        List hashList = computeHashes(words, multiplier);
        Map hashMap = partition(hashList);
        System.out.println("\n" + multiplier + "\n,count");
        hashMap.forEach((x, y) -> System.out.println(x + "," + y));
    }
}

/**
 * 将整个哈希空间等分成128份,统计每个空间内的哈希值数量
 * 
 * @param hashs
 */

public static Map partition(List hashs) {
    // step = 2^32 / 128 = 33554432
    final int step = 33554432;
    List nums = new ArrayList<>();
    Map statistics = new LinkedHashMap<>();
    int start = 0;
    for (long i = Integer.MIN_VALUE; i <= Integer.MAX_VALUE; i += step) {
        final long min = i;
        final long max = min + step;
        int num = (int) hashs.parallelStream().filter(x -> x >= min && x < max).count();

        statistics.put(start++, num);
        nums.add(num);
    }

    // 为了防止计算出错,这里验证一下
    int hashNum = nums.stream().reduce((x, y) -> x + y).get();
    assert hashNum == hashs.size();

    return statistics;
}

生成数据之后,保存文本为csv后缀,通过Excel打开。再通过Excel的图表功能,选择柱状图,生成以下图表。

乘数2乘数17乘数31乘数33乘数73乘数127乘数133乘数161乘数237

除了2和17,其他数字的分布基本都比较均匀。

总结

现在我们基本了解了Java String类的哈希乘数选择31的原因了,主要有以下几点。

  • 31是奇素数。
  • 哈希分布较为均匀。偶数的冲突率基本都很高,只有少数例外。较小的乘数,冲突率也比较高,如1至20
  • 哈希计算速度快。可用移位和减法来代替乘法。现代的VM可以自动完成这种优化,如31 * i = (i << 5) - i
  • 31和33的计算速度和哈希分布基本一致,整体表现好,选择它们就很自然了。

当参与哈希计算的项有很多个时,越大的乘数就越有可能出现结果溢出,从而丢失信息。我想这也是原因之一吧。

尽管从测试结果来看,比31、33大的奇数整体表现有更好的选择。然而31、33不仅整体表现好,而且32的移位操作是最少的,理论上来讲计算速度应该是最快的。

最后说明一下,我通过另外两台Linux服务器进行测试对比,发现结果基本一致。但以上测试方法不是很严谨,与实际生产运行可能存在偏差,结果仅供参考。

几个常用实现选项

values chosen to initialize h and a for some of the popular implementations

其中

  • INITIAL_VALUE:哈希初始值。Java String的初始值hash=0。
  • a:哈希乘数。Java String的哈希乘数为31。

 

参考

https://stackoverflow.com/questions/299304/why-does-javas-hashcode-in-string-use-31-as-a-multiplier

https://segmentfault.com/a/1190000010799123

https://en.wikipedia.org/wiki/Universal_hashing

《Effective Java中文版本》第2版

 

转载请注明来源:http://zhanjia.iteye.com/blog/2426892

 

个人公众号

二进制之路

 

为什么Java String哈希乘数为31?_第1张图片

你可能感兴趣的:(哈希,算法,hash,31,33)