一、小概述
JobTracker端的心跳机制主要任务是处理TaskTracker发送过来的心跳信息,判断TaskTrakcer是否存活、及时让JobTracker获取到各个节点上的资源使用情况和任务运行情况和为TaskTracker下达各种命令等功能。
二、心跳处理过程详解
JobTracker端的心跳机制处理代码只要是JobTracker类的heartbeat方法,通过逐步的分析其中大概的流程比较多,但是万变不离其中都是先各种容错性检测,对Task、TaskTracker、job状态信息的更新以及临时资源的清理,处理心跳信息,返回心跳应答信息等。下面看看简单的流程图:
(1)过程一,检测当前TaskTracker是否可以接入JobTracker。
在该过程中,JobTracker会对TaskTracker是否可以进行连接进行检测。
当且仅当该TaskTracker在host list(由参数mapred.hosts配置)中,但是不在exclude list(由mapred.hosts.exclude指定)中,才允许接入。如果不允许接入则会直接抛出异常终止本次心跳处理。代码定位到JobTracker类的heartbeat方法:
... //JobTracker检测该TaskTracker是否可以进行连接,当且仅当该TaskTracker在host list(由参数mapred.hosts配置)中, //但是不在exclude list(由mapred.hosts.exclude指定)中,才允许接入。 if (!acceptTaskTracker(status)) { throw new DisallowedTaskTrackerException(status); } ...
追踪进入acceptTaskTracker方法,可以清楚的看到:
... /** * Returns true if the tasktracker is in the hosts list and * not in the exclude list. */ private boolean acceptTaskTracker(TaskTrackerStatus status) { return (inHostsList(status) && !inExcludedHostsList(status)); } ...
(2)过程二,检测TaskTracker是否已经被重启
在JobTracker允许TaskTracker接入的前提下,检查该TaskTracker是否已经被重启过了(是否重启过的restarted参数有TaskTracker通过心跳传给JobTracker)。如果TaskTracker被重启过,则将之标注为健康状态的TaskTracker,并且从黑名或者灰名单中清除,否则启动容错机制以检测它是否处于健康状态。
(3)过程三,检测TaskTracker是否是第一次连接JobTracker。
这是一个非常重要的容错步骤。如果是非初次心跳,正常情况下在JobTracker中的trackerToHeartbeatResponseMap对象中会存在该TaskTracker上一次的心跳应答对象信息HeartbeatResponse,初次心跳连接则不会有该TaskTracker上一次的应答对象。但是在非正常情况下会出现,非初次心跳,但是trackerToHeartbeatResponseMap没有该TaskTracker的应答对象信息存在,这是可能由于网络等各方面的原因造成的,另外重要的一点是initialContact标识是从TaskTracker端通过心跳发送过来的,JobTracker端记录的该TaskTracker状态不一定是一致的。因此,在这一步要进行比较多的容错性校验。
首先,通过TaskTracker通过心跳带来的initialContact标志判断该TaskTracker是否是初次链接,如果是则直接进入处理心跳信息环节。如果非初次连接并且上一次心跳应答对象不存在,则会去判断该JobTracker是否被重启过,如果不是,说明上次心跳应答丢失那么直接给该TaskTracker组装重新初始化命令让其重新初始化,如果JobTracker被重启过则会自动先检测是否存在需要恢复运行状态的作业。如果有,则可以通过日志恢复这些作业的运行状态,并重新调度那么些没有运行的tasks,当然也包括了已经产生部分结果的tasks(前提是启用作业恢复机制,有参数mapred.jobtracker.restart.recover配置,具体地内容可以参考我的blog源码分析系列第4篇)。在JobTracker重启过程中各个TaskTracker依旧还活着的,此时通知RecoveryManager该TaskTracker已经重新连接,并且从recoveryManager中remove掉。另外的一种情况,非初次连接并且针对该TaskTracker的上次的心跳应答对象信息还存在,则判断JobTracker端的上一次对该TaskTracker的心跳应答ID是否与该TaskTracker带过来的应答ID一致,如果不一致,属于丢失心跳情况,返回上一次心跳信息给该TaskTracker,这样可以防止处理重复的心跳请求你。这部分的容错校验比较复杂步骤比较多,想整体了解还是看上面的流程图吧。贴一下这段代码:
... if (initialContact != true) {//该TaskTracker不是是第一次连接JobTracker // If this isn't the 'initial contact' from the tasktracker, // there is something seriously wrong if the JobTracker has // no record of the 'previous heartbeat'; if so, ask the // tasktracker to re-initialize itself. //TaskTracker非第一次连接JobTracker,并且上一次心跳应答对象为空 if (prevHeartbeatResponse == null) { // This is the first heartbeat from the old tracker to the newly // started JobTracker if (hasRestarted()) {//判断JobTracker是否重启过 addRestartInfo = true; // inform the recovery manager about this tracker joining back recoveryManager.unMarkTracker(trackerName); } else {//心跳丢失,向该TaskTracker返回重新进行初始化命令 // Jobtracker might have restarted but no recovery is needed // otherwise this code should not be reached LOG.warn("Serious problem, cannot find record of 'previous' " + "heartbeat for '" + trackerName + "'; reinitializing the tasktracker"); return new HeartbeatResponse(responseId, new TaskTrackerAction[] {new ReinitTrackerAction()}); } } else {//TaskTracker非第一次连接JobTracker,并且上一次心跳应答对象不为空 // It is completely safe to not process a 'duplicate' heartbeat from a // {@link TaskTracker} since it resends the heartbeat when rpcs are // lost see {@link TaskTracker.transmitHeartbeat()}; // acknowledge it by re-sending the previous response to let the // {@link TaskTracker} go forward. //判断JobTracker端的上一次对该TaskTracker的心跳应答ID是否与该TaskTracker带过来的应答ID一致 if (prevHeartbeatResponse.getResponseId() != responseId) {//不一致,属于丢失心跳情况,返回上一次心跳信息给该TaskTracker LOG.info("Ignoring 'duplicate' heartbeat from '" + trackerName + "'; resending the previous 'lost' response"); return prevHeartbeatResponse; } } } ...
(4)过程四,处理心跳请求。
处理心跳请求环节是整个JobTracker心跳的机制的核心。这里最主要的任务就是根据心跳带来的TraskTracker状态信息去更新当前集群的资源使用情况、Task信息和节点健康信息。代码如下:
// Process this heartbeat short newResponseId = (short)(responseId + 1);//心跳相应加1 //记录心跳的发送时间,以便发现在一定时间内未发送心跳的TaskTracker,并将之标注为死亡状态,以后不再向其分配新的Tasks status.setLastSeen(now); if (!processHeartbeat(status, initialContact, now)) { //如果存在针对该TaskTracker的上一次心跳应答时,将其清空以便将新的应答放进来 if (prevHeartbeatResponse != null) { trackerToHeartbeatResponseMap.remove(trackerName); } //当处理心跳请求失败时将返回“重新初始化”给该TaskTracker return new HeartbeatResponse(newResponseId, new TaskTrackerAction[] {new ReinitTrackerAction()}); }
其他的小的细节可以自己看代码和注释,这个主要讲讲processHeartbeat方法,跟进去:
/** * Process incoming heartbeat messages from the task trackers. */ private synchronized boolean processHeartbeat( TaskTrackerStatus trackerStatus, boolean initialContact, long timeStamp) throws UnknownHostException { getInstrumentation().heartbeat(); String trackerName = trackerStatus.getTrackerName(); synchronized (taskTrackers) { synchronized (trackerExpiryQueue) { //通过旧的以及当前心跳传来的TaskTracker状态信息更新TaskTracker对象记录的状态资源信息,seenBefore返回值代表是否在JobTracker端的上一次存在的该TaskTracker的状态信息(true表示存在) boolean seenBefore = updateTaskTrackerStatus(trackerName, TaskTracker taskTracker = getTaskTracker(trackerName); if (initialContact) {//初次心跳连接 // If it's first contact, then clear out // any state hanging around if (seenBefore) {//在JobTracker端,存在上一次该TaskTracker的状态信息,则将其清空 lostTaskTracker(taskTracker); } } else {//非初次连接 // If not first contact, there should be some record of the tracker if (!seenBefore) {//在JobTracker端,不存在上一次该TaskTracker的状态信息 LOG.warn("Status from unknown Tracker : " + trackerName); updateTaskTrackerStatus(trackerName, null);//更新该TaskTrakcer的资源状况 return false; } } if (initialContact) { // if this is lost tracker that came back now, and if it's blacklisted // increment the count of blacklisted trackers in the cluster if (isBlacklisted(trackerName)) {//判断该TaskTracker是否在黑名单中 faultyTrackers.incrBlacklistedTrackers(1); } // This could now throw an UnknownHostException but only if the // TaskTracker status itself has an invalid name addNewTracker(taskTracker); } } } updateTaskStatuses(trackerStatus);//更新Task信息 updateNodeHealthStatus(trackerStatus, timeStamp);//更新节点健康状态信息 return true; }
该方法处理新的心跳请求,简单地来说就是通过旧的TaskTracker状态信息和当前心跳带来的TaskTracker对象的状态信息去更新集群当前的资源信息。另外还会去更新该TraskTracker上的Tasks信息和更新发来当前心跳节点的健康状态信息。上面处理心跳信息的代码中,还会判断是否是TT和JT的初次连接,如果非初次连接并且上次的TaskTracker状态信息不存在则该次心跳处理失败直接返回false,对该TaskTracker下重新初始化命令,让其重启初始化。再看看具体的更新方法updateTaskTrackerStatus
private boolean updateTaskTrackerStatus(String trackerName, TaskTrackerStatus status) { TaskTracker tt = getTaskTracker(trackerName); //获得上一次TT在JT中的状态信息对象 TaskTrackerStatus oldStatus = (tt == null) ? null : tt.getStatus(); //根据上一次TT在JT中的状态信息对象存在时,更新资源信息。 if (oldStatus != null) { totalMaps -= oldStatus.countMapTasks(); totalReduces -= oldStatus.countReduceTasks(); occupiedMapSlots -= oldStatus.countOccupiedMapSlots(); occupiedReduceSlots -= oldStatus.countOccupiedReduceSlots(); getInstrumentation().decRunningMaps(oldStatus.countMapTasks()); getInstrumentation().decRunningReduces(oldStatus.countReduceTasks()); getInstrumentation().decOccupiedMapSlots(oldStatus.countOccupiedMapSlots()); getInstrumentation().decOccupiedReduceSlots(oldStatus.countOccupiedReduceSlots()); ... //根据当前心跳传过来的TaskTracker状态信息对象更新当前资源信息。 if (status != null) { totalMaps += status.countMapTasks(); totalReduces += status.countReduceTasks(); occupiedMapSlots += status.countOccupiedMapSlots(); occupiedReduceSlots += status.countOccupiedReduceSlots(); getInstrumentation().addRunningMaps(status.countMapTasks()); getInstrumentation().addRunningReduces(status.countReduceTasks()); getInstrumentation().addOccupiedMapSlots(status.countOccupiedMapSlots()); getInstrumentation().addOccupiedReduceSlots(status.countOccupiedReduceSlots()); ... getInstrumentation().setMapSlots(totalMapTaskCapacity); getInstrumentation().setReduceSlots(totalReduceTaskCapacity); ...
(5)过程五,为TaskTracker下达命令过程。
该过程主要是遍历JobTracker中的各种对象映射集合(可以看我源码分析第二篇文章的第三点http://zengzhaozheng.blog.51cto.com/8219051/1352280),取得相关命令,然后为TaskTracker下达命令。
... // Check for tasks to be killed ListkillTasksList = getTasksToKill(trackerName); if (killTasksList != null) { actions.addAll(killTasksList); } // Check for jobs to be killed/cleanedup List killJobsList = getJobsForCleanup(trackerName); if (killJobsList != null) { actions.addAll(killJobsList); } // Check for tasks whose outputs can be saved List commitTasksList = getTasksToSave(status); if (commitTasksList != null) { actions.addAll(commitTasksList); } // calculate next heartbeat interval and put in heartbeat response int nextInterval = getNextHeartbeatInterval();//生成下一次心跳汇报时间 response.setHeartbeatInterval(nextInterval); response.setActions( actions.toArray(new TaskTrackerAction[actions.size()])); // check if the restart info is req if (addRestartInfo) { response.setRecoveredJobs(recoveryManager.getJobsToRecover()); } // Update the trackerToHeartbeatResponseMap trackerToHeartbeatResponseMap.put(trackerName, response); // Done processing the hearbeat, now remove 'marked' tasks removeMarkedTasks(trackerName); ...
详细说说各种命令:
ReinitTrackerAction,重新初始化命令
上面的过程分析中,已经多次提到过ReinitTrackerAction命令,它在容错性检测出错的时候往往会被执行,JobTracker发送这个命令对TaskTracker重新进行初始化。在JobTracker端的整个心跳处理过程中,运行ReinitTrackerAction命令大体有2种(在上面的分析过程中都有提到,可以回头看看):
丢失上次心跳应道信息:JobTracker保存了向每个TaskTracker发送的最近心跳应答信息。如果JobTracker不是刚刚重启并且TaskTracker不是初次链接JobTracker,而最近的心跳应答信息 丢失,这会造成不一致情况。
丢失TaskTracker的状态信息:JobTracker接收到任何一个心跳信息后,都会将其TaskTracker的对象信息(TaskTrackerStatus类)保存起来。如果一个TaskTracker 非初次连接JobTracker但是其状态信息又不存在,造成不一致的情况。
LaunchTaskAction
该类封装了TaskTracker分配的新任务,新任务的类型分两种:计算型任务和辅助型任务。其中计算型任务负责处理实际数据的任务,也就是我们常说的Reduce和Map任务,他们由专门的任务调度器去调用(默认是FIFO调度器)。另外辅助型任务包括:job-setup task、job-cleanup task和task-cleanup task三种。task-cleanup task的主要作用是清理失败的map或者reduce任务的部分结果数据,它由jobTracker直接调度,而且其调度的优先级比map和reduce任务都要高。至于job-setup task和job-cleanup task任务的作用我认为比较简单,主要是标志map和reduce作业运行开始和运行结束的同步标志。jobTracker为一个有空闲slot并且不在黑名单中的taskTracker分配任务的选择顺序是先辅助型任务然后计算型任务,这点我们可以从heartbeat方法看出来:
HeartbeatResponse response = new HeartbeatResponse(newResponseId, null); Listactions = new ArrayList (); //faultyTrackers队列,当该TaskTracker上有任务运行失败,那么其对应的host会被添加到此列表中, //同时错误信息以及发生错误的时间、错误次数也会被记录起来.按一定的规则(没有详细研究)组成黑名单和灰名单。 boolean isBlacklisted = faultyTrackers.isBlacklisted(status.getHost()); // Check for new tasks to be executed on the tasktracker if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) { //获得所有TT状态信息 TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName); if (taskTrackerStatus == null) { LOG.warn("Unknown task tracker polling; ignoring: " + trackerName); } else { //有限选择辅助型任务,选择优先顺序为:job-cleanup task、task-cleanup task和job-setup task //这样可以让运行完成的作业快速结束,新提交的作业立刻进入到运行状态 List tasks = getSetupAndCleanupTasks(taskTrackerStatus); //如果没有辅助型任务就选择执行计算行任务 if (tasks == null ) { //直接有任务调度器去选择一个或者多个计算行任务 tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName)); } if (tasks != null) { for (Task task : tasks) { expireLaunchingTasks.addNewTask(task.getTaskID()); if(LOG.isDebugEnabled()) { LOG.debug(trackerName + " -> LaunchTask: " + task.getTaskID()); } actions.add(new LaunchTaskAction(task)); } } }
KillTaskAction
该类封装了TaskTracker需要杀死的任务。TaskTracker收到该任务后会杀掉对应的任务以及清理掉工作目录和释放slot。JobTracker主要在下面情况下会向TrackerTracker发送KillTaskAction命令(不全):
(1)整个作业运行失败,其他正在运行的Task也会被杀死。
(2)启动推测执行任务机制(默认启动)后,同一份数据可能有2个Task Attempt处理。只要一个Task Attempt运行成功后,两外一个处理同一份数据的任务就会被kill掉。
(3)TaskTracker在指定时间内没有向JobTracker汇报心跳,则JobTracker会任务它已经死掉,那么在它上面运行的所有task就会被标注为死亡。
(4)用户自己直接调用命令"bin/hadoop job -kill-task"或者"bin/hadoop job -fail-task",使一个或者多个任务失败。
KillTaskAction
KillTaskAction封装了TaskTracker待清理的作业。当TaskTracker接收到KillTaskAction命令后会清理此作业工作目录。下面几个主要的场景会出现这种情况:
(1)用户主动杀死作业,调用"bin/hadoop job -kill"或者"bin/hadoop job -fail"命令。
(2)作业运行完毕,通知TaskTracker清理作业目录。
(3)作业运行失败,通知TaskTracker清理作业目录。
CommitTaskAction
该类封装了TaskTracker需要提交的任务。为了防止同一个TaskInProgress的两个同时运行的Task Attempt(例如打开推测执行功能,一个任务可能有多个备份任务)同时打开一个文件或者往同一个文件中写数据而生产冲突,Hadoop让每个Task Attempt写到单独一个文件中(以taskAttemptID命名,比如attempt_201402171212_0009_r_000000_0)中。通常而言,Hadoop让每个Task Attempt将计算结果写到临时目录${mapred.output.dir}/_tmporary/_${taskID}中,当某个Task Attempt运行成功后,再将运行结果转移到最终目录${mapred.output.dir}中。Hadoop将一个成功运行的Task Attempt结果文件从临时目录移动到最终目录的过程,称为“任务提交”。当TaskProgress中的一个任务被提交后,其他任务将被杀死,同时意味着该TaskTracker运行完成。
三、集群规模调整动态调整心跳间隔
从在上一篇blog中分析TaskTracker端的心跳机制中,我们知道TaskTracker会通过“外带心跳”和根据Task完成数目来动态调整心跳间距。 JobTracker端的心跳处理也有相应的机制以用来调整TaskTracker心跳的汇报时间间隔。这种调整的意义在于可以提高系统的吞吐量,避免心跳间隔过小造成JobTracker要进行并发处理的请求压力大,和心跳间隔过大造成资源浪费不能是TaskTracker及时汇报资源信息给JobTracker,进而为之分配任务。JobTracker监控者整个集群的规模情况,可以通过这个动态地调整每个TaskTracker下次汇报心跳的时间间隔,并通过心跳机制告诉TaskTracker。 最重要的是这种机制还是可控制的,JobTracker允许用户通过参数设置心跳的时间间隔加速比例,简单说就是每增加mapred.heartbeats.in.second(最小是1,默认为100)个节点,心跳时间间隔就增加mapreduce.jobtracker.heartbeats.scaling.factor(最小是0.01,默认1)秒,简单说默认情况下增加100个节点心跳就增加1秒。但是,为了防止用户参数设置不合理而对JobTracker产生较大负载,JobTracker要求心跳间隔大于或者等于3秒。具体算法看代码,JobTracker类的getNextHeartbeatInterval方法:
/** * Calculates next heartbeat interval using cluster size. * Heartbeat interval is incremented by 1 second for every 100 nodes by default. * @return next heartbeat interval. */ public int getNextHeartbeatInterval() { // get the no of task trackers //获得当前集群的TaskTracker数目 int clusterSize = getClusterStatus().getTaskTrackers(); int heartbeatInterval = Math.max( (int)(1000 * HEARTBEATS_SCALING_FACTOR * Math.ceil((double)clusterSize / NUM_HEARTBEATS_IN_SECOND)), HEARTBEAT_INTERVAL_MIN) ; return heartbeatInterval; }
其中HEARTBEATS_SCALING_FACTOR对应上面所说的mapreduce.jobtracker.heartbeats.scaling.factor参数,NUM_HEARTBEATS_IN_SECOND对应着mapred.heartbeats.in.second参数,HEARTBEAT_INTERVAL_MIN默认值为3 * 1000。
参考文献:
[1]《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》
[2] http://hadoop.apache.org