- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- Hadoop架构
henan程序媛
hadoop大数据分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
- 分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目大数据大数据pythonhadoop计算机毕业设计选题计算机毕业设计源码数据分析spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
- linux挂载文件夹
小码快撩
linux
1.使用NFS(NetworkFileSystem)NFS是一种分布式文件系统协议,允许一个系统将其文件系统的一部分共享给其他系统。检查是否安装NFSrpm-qa|grepnfs2.启动和启用NFS服务假设服务名称为nfs-server.service,你可以使用以下命令启动和启用它:sudosystemctlstartnfs-server.servicesudosystemctlenablenf
- nfs服务搭建
GHope
nfs是什么?基哥度娘网络文件系统(NFS)是sun微系统最初开发的分布式文件系统协议,[1]允许客户端计算机上的用户通过计算机网络访问文件很像本地存储被访问。NFS与许多其他协议一样,在开放网络计算远程过程调用(很久以前RPC)系统上建立。NFS是在请求注释(RFC)中定义的开放标准,允许任何人实现协议。NFSNFS优势:节省本地存储空间,将常用的数据存放在一台NFS服务器上且可以通过网络访问,
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- 月度总结 | 2022年03月 | 考研与就业的抉择 | 确定未来走大数据开发路线
「已注销」
个人总结hadoop
一、时间线梳理3月3日,寻找到同专业的就业伙伴3月5日,着手准备Java八股文,决定先走Java后端路线3月8月,申请到了校图书馆的考研专座,决定暂时放弃就业,先准备考研,买了数学和408的资料书3月9日-3月13日,因疫情原因,宿舍区暂封,这段时间在准备考研,发现内容特别多3月13日-3月19日,大部分时间在刷Hadoop、Zookeeper、Kafka的视频,同时在准备实习的项目3月20日,退
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 掌握检索技术:构建高效知识检索系统的架构与算法23
是小旭啊
人工智能
在检索专业知识层需要涵盖更高级的检索技术,包括工程架构和算法策略。一、工程架构工程架构在构建检索系统中决定了系统的可扩展性、高可用性和性能。比如需要考虑的基本点:分布式架构:水平扩展:采用分布式架构,将检索任务分布到多个节点上,实现水平扩展。这可以通过将索引数据分片存储在不同的节点上,并使用分布式文件系统或对象存储来存储大规模的索引数据。任务分配:设计任务调度器,负责将查询请求分配到空闲的节点上进
- 掌握检索技术:构建高效知识检索系统的架构与算法21
是小旭啊
人工智能
在检索专业知识层需要涵盖更高级的检索技术,包括工程架构和算法策略。一、工程架构工程架构在构建检索系统中决定了系统的可扩展性、高可用性和性能。比如需要考虑的基本点:分布式架构:水平扩展:采用分布式架构,将检索任务分布到多个节点上,实现水平扩展。这可以通过将索引数据分片存储在不同的节点上,并使用分布式文件系统或对象存储来存储大规模的索引数据。任务分配:设计任务调度器,负责将查询请求分配到空闲的节点上进
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- 【HDFS】【HDFS架构】【HDFS Architecture】【架构】
资源存储库
hdfs架构hadoop
目录1Introduction介绍2AssumptionsandGoals假设和目标HardwareFailure硬件故障StreamingDataAccess流式数据访问LargeDataSets大型数据集SimpleCoherencyModel简单凝聚力模型“MovingComputationisCheaperthanMovingData”“移动计算比移动数据更便宜”PortabilityAc
- Hadoop学习第三课(HDFS架构--读、写流程)
小小程序员呀~
数据库hadoop架构bigdata
1.块概念举例1:一桶水1000ml,瓶子的规格100ml=>需要10个瓶子装完一桶水1010ml,瓶子的规格100ml=>需要11个瓶子装完一桶水1010ml,瓶子的规格200ml=>需要6个瓶子装完块的大小规格,只要是需要存储,哪怕一点点,也是要占用一个块的块大小的参数:dfs.blocksize官方默认的大小为128M官网:https://hadoop.apache.org/docs/r3.
- hdfs启动流程
weixin_44352020
hadoophdfshadoop
Namenode1.init()namenode初始化,执行加载配置文件等操作2.loadFsImage()开始加载元数据将FsImage护额徐为目录树,保存在内存中FsImage中主要包含了问价你和数据块的对应关系3.loadEditlog()加载Editlog,将Editlog中记录的元数据修改应用到内存中;4.saveCheckpoint()将内存中最新的目录树持久化为新的FsImage到磁
- hdfs开机启动流程
鸭梨山大哎
hadoophdfs
第一步:加载name目录下最新的那个fsimage_xxx019文件,将里面存储的元数据(目录树结构)维护到内存中,但是还不是关机前的状态第二步:将关机前的最后使用的edits_inprogress_xxxx0160进行重命名edits_0000000000000000160-0000000000000000169操作,然后生成一个最新的edits_inprogress_xxx170文件,并修改s
- hadoop启动HDFS命令
m0_67401228
java搜索引擎linux后端
启动命令:/hadoop/sbin/start-dfs.sh停止命令:/hadoop/sbin/stop-dfs.sh
- 【HDFS主从集群】存在两个独立的问题和解决方案
流辉fglow
大数据#HDFShdfsjavahadoop大数据分布式学习
主从集群存在两个独立的问题和解决方案单点“主”的两个独立的问题以下是解决方案HA高可用方案:解决单点故障导致集群整体不可用问题Federation联邦机制:解决NN压力过大问题总结一般很多技术都是主从结构(最简单的结构)优点:结构相对简单,主与从协作“主”是单点,好处有,缺点也有好处:单点NameNode,数据一致性好掌握 因为一个人管,说一不二的单点“主”的两个独立的问题关键词:独立:两套独立
- 【HDFS】角色的架构设计
流辉fglow
#HDFS大数据hdfshadoop大数据学习分布式
HDFS角色的架构设计前置知识:Windows与Linux文件系统的差异HDFS中的角色及功能HDFS的架构NameNodeDataNodeNameNode元数据的持久化说明:/表示两个词是同一语义,方便你理解的前置知识:Windows与Linux文件系统的差异Windows&LInux虽然都有硬盘/分区、目录,但感受很不同的是:Windows:有很强的分区概念,要先通过不同的“盘符”去找文件在命
- HDFS的启动过程
ffbc2020
HDFSHDFS
HDFS的启动过程HDFS的启动过程分为四个阶段:第一阶段:NameNode读取包含元数据信息的fsimage文件,并加载到内存;第二阶段:NameNode读取体现HDFS最新状态的edits日志文件,并加载到内存中第三阶段:生成检查点,SecondaryNameNode将edits日志中的信息合并到fsimage文件中第四阶段:进入安全模式,检查数据块的完整性HDFS的安全模式什么是安全模式安全
- 集群hdfs启动
sxu~源
hdfshadoopbigdata
1)各个模块分开启动/停止(配置ssh是前提)常用(1)整体启动/停止HDFSstart-dfs.sh/stop-dfs.sh(2)整体启动/停止YARNstart-yarn.sh/stop-yarn.sh2)各个服务组件逐一启动/停止(1)分别启动/停止HDFS组件hdfs--daemonstart/stopnamenode/datanode/secondarynamenode(2)启动/停止Y
- 【计算机毕设-大数据方向】基于Hadoop的电商交易数据分析可视化系统的设计与实现
程序员-石头山
大数据实战案例大数据hadoop毕业设计毕设
博主介绍:✌全平台粉丝5W+,高级大厂开发程序员,博客之星、掘金/知乎/华为云/阿里云等平台优质作者。【源码获取】关注并且私信我【联系方式】最下边感兴趣的可以先收藏起来,同学门有不懂的毕设选题,项目以及论文编写等相关问题都可以和学长沟通,希望帮助更多同学解决问题前言随着电子商务行业的迅猛发展,电商平台积累了海量的数据资源,这些数据不仅包括用户的基本信息、购物记录,还包括用户的浏览行为、评价反馈等多
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- spark常用命令
我是浣熊的微笑
spark
查看报错日志:yarnlogsapplicationIDspark2-submit--masteryarn--classcom.hik.ReadHdfstest-1.0-SNAPSHOT.jar进入$SPARK_HOME目录,输入bin/spark-submit--help可以得到该命令的使用帮助。hadoop@wyy:/app/hadoop/spark100$bin/spark-submit--
- spark启动命令
学不会又听不懂
spark大数据分布式
hadoop启动:cd/root/toolssstart-dfs.sh,只需在hadoop01上启动stop-dfs.sh日志查看:cat/root/toolss/hadoop/logs/hadoop-root-datanode-hadoop03.outzookeeper启动:cd/root/toolss/zookeeperbin/zkServer.shstart,三台都要启动bin/zkServ
- 编程常用命令总结
Yellow0523
LinuxBigData大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不