- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 安全测试数据的分析、报告及业务应用
蚂蚁质量
安全测试质量体系安全网络web安全
一、安全测试指标与测量目标在风险分析和管理流程中,有效运用安全测试数据的前提是准确定义安全测试指标和测量目标。例如,通过统计安全测试中发现的漏洞总数,能够量化应用程序的安全状态,还可据此设定软件安全测试的目标,如在应用程序投入生产环境前,将漏洞数量降低至可接受的最低限度。另一个具有管理价值的目标是将应用程序的安全状态与安全基线进行对比,以此评估应用安全流程的改进情况。假设安全指标基线对应的是仅完成
- 【2025年37期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深指数实时数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言股票api股票数据股票数据接口
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- 草根版外卖避雷计划「数据库寄生 2.0」优化方案
cainiaojunshi
预算方案智慧城市
接上回计划省钱版【打败美团和饿了吗的机会越来越大了!#外卖避雷计划#】[特殊字符][特殊字符]-CSDN博客(含三端流程图+预算穿透表+风险应对)一、策划目标(草根版核心)实现单城外卖后厨监督轻量化:✅创作端:骑手/打假人扫码接单,视频自动同步(省90%录入时间)✅服务端:AI+算法自动跑批,日省2小时人工干预(年省2.22万)✅观看端:实时暴雷指数+悬赏助力,用户信任度提升40%✅终极目标:单城
- 模型量化 (Model Quantization) 算法 (Model Quantization Algorithms)
(initial)
大模型科普算法人工智能量化
1模型量化的必要性:降低模型大小、加速推理、减少资源消耗随着深度学习模型的日益复杂和庞大,其在资源受限的设备(如移动端、嵌入式设备)上的部署面临着巨大的挑战。即使在服务器端,部署大型模型也会带来高昂的计算成本和能源消耗。模型量化(ModelQuantization)作为一种关键的模型压缩和加速技术应运而生。其核心思想是将模型中的浮点数(通常是FP32或FP16)表示的权重和激活值转换为低精度整数(
- 全自动量化交易软件是否真的可靠?使用过程中有哪些潜在风险需要注意
财云量化
python炒股自动化量化交易程序化交易全自动量化交易软件可靠性潜在风险数据准确性股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- 嵌入式AI必备技能2-模型的压缩与加速
奥德彪123
嵌入式AI人工智能嵌入式
嵌入式AI必备技能2-模型的压缩与加速引言随着嵌入式AI设备的广泛应用,模型的计算效率和存储需求成为核心挑战。由于嵌入式系统通常资源受限,传统的深度学习模型往往难以直接部署。因此,模型压缩和加速技术应运而生,旨在减少计算量、降低存储需求,同时尽可能保持模型的准确性。本文介绍几种常见的模型压缩与加速方法,包括剪枝、低秩分解、量化、权值共享、知识蒸馏等,并探讨如何综合应用这些技术来优化AI模型。1.常
- 海量数据查询加速:Presto、Trino、Apache Arrow
晴天彩虹雨
apache大数据hive数据仓库
1.引言在大数据分析场景下,查询速度往往是影响业务决策效率的关键因素。随着数据量的增长,传统的行存储数据库难以满足低延迟的查询需求,因此,基于列式存储、向量化计算等技术的查询引擎应运而生。本篇文章将深入探讨Presto、Trino、ApacheArrow三种主流的查询优化工具,剖析其核心机制,并通过案例分析展示它们在实际业务中的应用。2.Presto:分布式SQL查询引擎2.1Presto介绍Pr
- 審單人員效率 PPP 模型
chenchihwen
网络sql数据库
审单人员效率PPP模型的目的审单人员效率PPP模型的主要目的是通过系统化的计算和分析,评估审单人员的工作效率,并为管理决策提供数据支持。具体包括以下几个方面:1.量化审单人员的工作效率目的:通过审单数量、工时、折算率等指标,量化审单人员的工作效率。实现方式:计算每个审单人员的审单量(vol_o)。根据标准工时表(t_dash_ppp_checker_std_v)折算审单数量(vol_c)。结合有效
- Milvus 本地Ollama向量化markdown文件
慌雨
milvus数据库
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言代码测试注意前言提示:这里可以添加本文要记录的大概内容:我在局域网内安装了milvus服务,现在需要把一个文件夹里所有的markdown文档都向量化到milvus数据库中。所用的切分方法是langchain中自带的markdown按照标题切分,且带有标题的metadata,非常清晰。但是用langchain提供的milvu
- 嵌入式软件工程师为什么要撰写博客?——开启技术进阶与职业发展的双重大门
Electron-er
软件需求嵌入式硬件架构单片机人工智能
目录一、技术沉淀:构建嵌入式知识复利系统知识沉淀的三层架构二、职业发展:量化个人技术品牌价值职业价值评估模型三、社区贡献:推动嵌入式技术生态演进知识传播的涟漪效应四、写作方法论:打造专业级技术博客内容开发五步法可视化增强技术五、数据验证:博客投资回报率分析六、实践指南:从入门到专家的路径规划博客运营路线图关键成功要素结语一、技术沉淀:构建嵌入式知识复利系统在嵌入式开发领域,寄存器操作、RTOS调度
- 阿里云国际站代理商:怎样量化虚拟世界的QoE体验指标?
linglideman
阿里云
1.沉浸体验质量(QImE)沉浸体验质量主要衡量虚拟世界中视觉和听觉的沉浸感,包括以下几个关键指标:视频质量(QP):考虑视频的平均码率(Brv)、帧率(FR)、分辨率(Rh、Rv)、视场角(FoVh)以及编码标准(Codecv)等因素。音频质量(QA):涉及音频的平均码率(Bra)、声道数(NAC)、采样率(Sra)和编码标准(Codeca)。音视频同步时延(Tasyn):衡量音视频的同步性,影
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 【2025年35期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深A股当天分价成交占比数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言股票API股票数据接口股票数据
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- Excel中怎样通过网站获取股票实时数据?
股票程序化交易接口
量化交易股票API接口Python股票量化交易excel股票实时数据网站数据源股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>财经新闻网站是获取股票信息的常见来源。像新浪财经、腾讯财经等网站,它们提供了大量的股票数据。这些网站数据更新较为及时,包含股票的实时价格、成交量等基本信息。从这类网站获取数据到Excel可能相对复杂一些,因为它们的页面结构主要是为了方
- 股票接口有哪些类型?不同类型的股票接口在数据获取上有何差异?
财云量化
python炒股自动化量化交易程序化交易股票接口数据获取类型差异股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- Unity3D 着色器优化(Shader Optimization)
Thomas_YXQ
着色器Unity3D游戏开发Shader
前言Unity3D着色器(Shader)优化是提升渲染性能的关键环节,尤其是在移动设备或复杂场景中。以下是系统的优化策略和实践建议:对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!1.减少计算复杂度简化数学运算:优先使用mad(乘加)指令代替单独的乘法和加法。避免复杂函数(如sin,pow,exp),改用近似计算或查值纹理(LookupTexture)。利用向量化操作
- onnx处理和TensorRT量化推理相关代码工具
天亮换季
人工智能算法深度学习
一.说明 在模型量化过程中,经常要使用一些工具对onnx或者量化后的模型(这里以TensorRT为例)进行推理,往往需要一些处理工具,比如:拆分或者合并onnx;修改onnx中的量算子QuantizeLinear的scale值;以及使用onnxruntime进行推理;TensorRT的序列化文件的inference;隐式量化生成量化校准表…现提供一些封装好的工具,作为记录,方便日后查阅使用"
- 教你如何免费获取股票数据用python、JavaScript (Node.js)、JAVA等多种语言的实例代码演示(实时数据、历史数据、CDMA、KDJ等指标数据)配有股票数据API接口说明文档说明
蝶澈乐乐
pythonjavascriptnode.js数据仓库金融
近一两年来,股票量化分析逐渐受到广泛关注。而作为这一领域的初学者,首先需要面对的挑战就是如何获取全面且准确的股票数据。因为无论是实时交易数据、历史交易记录、财务数据还是基本面信息,这些数据都是我们进行量化分析时不可或缺的宝贵资源。我们的核心任务是从这些数据中挖掘出有价值的信息,为我们的投资策略提供有力的支持。在寻找数据的过程中,我尝试了多种途径,包括自编网易股票页面爬虫、申万行业数据爬虫,以及同花
- YOLOv8改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含C2f二次创新)
Limiiiing
YOLOv8改进专栏YOLO计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于EMA模块的YOLOv8目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv8的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv8改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Ne
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
Limiiiing
YOLOv12改进专栏YOLOv12目标检测深度学习计算机视觉
必读内容船新的YOLOv12改进专栏~1️⃣什么!不知道如何改进模型⁉️本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣找不到合适的模块⁉️所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到YOLOv12中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣不确定自己改进的步
- 如何更有效管理项目风险
项目管理
有效管理项目风险的核心在于全面识别风险、科学评估风险、动态监控调整。其中,全面识别风险要求在项目启动前就对内外部潜在风险进行详细排查;科学评估风险则需依托数据和模型量化风险概率与影响,为决策提供依据;动态监控调整强调在项目执行中实时跟踪风险变化,迅速采取应对措施,确保项目平稳推进。一、风险识别的重要性与方法在项目管理过程中,风险识别始终是整个风险管理体系的起点。全面识别风险不仅能够为后续定量评估提
- K8S Calico网络插件
u012804784
android网络flaskpython计算机
优质资源分享学习路线指引(点击解锁)知识定位人群定位Python实战微信订餐小程序进阶级本课程是pythonflask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。Python量化交易实战入门级手把手带你打造一个易扩展、更安全、效率更高的量化交易系统目录0.前言1.Calico概述1.1.Calico组件1.2.Calico网络实现1.3.了解Calico对CIDR子网
- 量化交易中用到的回测评估指标(策略收益、基准收益、Alpha比率、Beta比率、夏普比率、索提诺比率)详解
林不更新
量化交易python
前言近日在做A股的过程中接触到了量化交易。通过一个月时间的了解发现并非全自动印钞机,也有可能有全自动接盘侠的潜质。故现阶段以学习量化交易的知识为主,多学多问总是没错的嘛~现阶段使用Python爬取交易数据来验证自己的一些选股逻辑,笔者目前去一家民营的券商开户后,券商赠送了Ptrade作为量化软件供客户使用,可回测可交易(后续详细讲解记录该软件的使用过程)。目前是作为辅助选股使用,开启自动交易为时尚
- 【QwQ-32B-Preview】阿里通义QwQ登场MATH测试超OpenAI o1,开源AI推理新王,为数不多可以与OpenAI o1媲美的模型之一
Yukuii_0v0
人工智能aiAI编程自然语言处理
阿里通义千问今天(11月28日)发布《QwQ:思忖未知之界》博文,推出了QwQ-32B-Preview实验性研究模型,在数学和编程领域,尤其在需要深度推理的复杂问题上,具备卓越的AI推理能力。它是少数能与OpenAI的o1匹敌的模型之一,并且是第一个能以宽松许可证下载的模型。QwQ-32B-Preview在Apache2.0许可证下“公开”可用,这意味着它可以用于商业应用。QwQ-32B-Prev
- 量化交易中的模型评估指标有哪些?
股票量化
量化炒股股票炒股程序化交易量化炒股miniQMT股票交易AKShare程序化交易股票投资deepseek
量化交易中的模型评估指标有哪些?在量化交易的世界里,模型评估指标就像是航海者手中的指南针,指引着我们穿越市场的波涛。这篇文章将带你深入了解量化交易中那些至关重要的模型评估指标,让你在交易的海洋中不再迷失方向。引言量化交易,这个听起来既神秘又高大上的领域,其实离我们并不遥远。简单来说,量化交易就是利用数学模型来指导交易决策的过程。而在这个过程中,模型评估指标就是衡量模型好坏的尺子。一个好的模型,不仅
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include