内存分配以及回收

Java虚拟机运行时数据区,分为以下几个模块,包含所有线程共有的数据区和线程单独享有的数据区。
Java虚拟机_第1张图片

  1. 程序计数器:字节码行号,通过这个计数器来选取下一条需要执行的指令,线程独有。
  2. 虚拟机栈:线程私有。方法在执行时会创建一个栈帧,用于存储局部变量表等。局部变量表中存放了编译器可知的基本数据类型、对象引用、returnAddress(指向了一条字节码指令的地址)
  3. 本地方法栈:与虚拟机栈类似,只不过这个地方是为native方法服务。
  4. 堆:线程共用。存放对象实例。
  5. 方法区:线程共用。存储已经被虚拟机加载的类信息、常量、静态变量等。
  6. 运行时常量池:用于存放编译期生成的字面量和符合引用。字面量就是我们所说的常量概念,如文本字符串、被声明为final的常量值等。符号引用是一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可,一般包括下面三类常量:类和接口的全限定名、字段的名称和描述符、方法的名称和描述符。

Java虚拟机_第2张图片
JVM通过根搜索算法来判定对象是否可以回收,一般对于不能从根(GC Roots)搜索到的对象是可以被回收的。
能够被作为GC Roots对象有:虚拟机栈本地变量表中引用的对象(也就是正在调用的方法中引用的);方法区中静态属性或常量引用的对象;本地方法栈引用的对象。


可以被回收的对象并不一定绝对被回收,JVM先做一次标记和筛选,把那些覆盖了finalize方法的对象筛选出来然后触发finalize方法,如果在finalize方法中对象复活,则不回收,否则回收,且finalize方法仅会被触发一次。


垃圾回收算法

  1. 标记-清除:把标记为待回收的对象空间清除,容易造成大量空间碎片;
  2. 复制算法:将内存分为三个区域,一个较大的eden区和两个较小的survivor区。每次GC都把存活的对象挪到其中一个servivor区,然后把eden全部清除。只对每次GC时存活对象较少时比较有效,适用于新生代;
  3. 标记-整理:把标记后存活的对象向一个方向移动,然后清除其它空间。比较适合老年代。

内存分配与回收策略

  1. 对象默认优先分配在新生代;
  2. 大对象直接分配到老年代;
  3. 长期存活的对象转移到老年代:虚拟机给每个对象定义一个对象年龄,没发生一次minor GC,年龄就增加一次,超过默认值之后就会进入到老年代。
  4. 动态对象年龄判定:对象不一定是必须到了默认年龄才能进入老年代,如果一个eden区中所有相同年龄的对象大小综合超过eden一半的空间,那么大于等于这个年龄的对象也会进入老年代。

类文件结构

class文件是二进制组成的,class有两种数据类型:无符号数和表。
无符号数是基础数据类型,其中u1表示1个字节、u2表示2个字节(一个字节8个bit,而4个bit可以表示1个16进制的数,也就是说1个字节可以用2个16进制数表示);
表是由多个无符号数或其它表构成的。
Java虚拟机_第3张图片

  1. magic是4个字节,也就是8个16进制数,固定为CAFEBABE;后面分别是两个版本号。
  2. 常量池:跟着版本号之后的就是常量池(字面量和符号引用)。由于无法确认一个类中常量池有多少常量,所有先有一个值来标志有多少个,然后再是常量具体信息。
  3. 访问标志:常量池之后跟着的是2个字节的访问标志。需要被标志的内容包括:是否public、是否final、是否abstract、是类或接口
  4. 访问标志之后是类索引(用于确定该类的全限定名)、父类索引(用于确定父类的全限定名)、接口所有集合(实现的接口可能不止一个)
  5. 字段表集合:描述接口或类中声明的变量,包含类变量和实例变量。
  6. 方法表集合:描述类或接口中声明的fangfa。
  7. 属性表结合:
    code属性:java方法体中的代码经javac编译后会存储在code属性中(接口中方法或抽象方法没有code属性)
    Exceptions属性:列举出方法throws后面抛出的异常;
    其它各属性不再一一列举。

类加载机制

Java虚拟机_第4张图片
类加载的时机
主动引用的几种情况才会加载(前提是此类没有被加载过)

  1. new一个对象、引用类的static变量(final变量除外)、调用类的static方法;
  2. 对类进行反射调用时;
  3. 初始化一个类时,如果父类没有被初始化,则先初始化父类;
  4. 虚拟机启动时,初始化包含main方法的那个类

被动引用不会触发初始化

  1. 调用父类静态方法,不会初始化子类;
  2. 通过数组定义引用类,不会触发初始化;
  3. 引用静态常量不会触发。

加载过程

  1. 通过一个类全限定名获取定义此类的二进制字节流(一般是class文件)
  2. 将二进制字节流转化为方法区中的运行时数据结构
  3. 在内存(堆)中生成这个类的Class类的对象,作为方法区这个类的各个数据的访问入口

连接过程

  1. 验证阶段:文件格式验证(是否符合Class文件规范)、元数据验证(是否符合java语法规范)、字节码验证(确保语义是符合逻辑的)、符合引用验证。
  2. 准备阶段:正式为类变量分配内存并设置初始值。
    有两点需要注意:
    一,此处只为类变量分配内存(static修饰的),不包含实例变量;
    二,设置的初始值是这个类型的0值,不是实际值(但被final修饰的赋的就是实际值)
  3. 解析阶段:将符合引用替换为直接引用

初始化过程
初始化过程主要是执行类构造器方法

  1. 方法主要是手机所有类变量的赋值动作,和静态语句块(staic {});
  2. 虚拟机会保证方法在父类中先调用,这样说明父类的static语句块要比子类的static变量赋值操作先执行,以下代码中,字段B的值将会是2Java虚拟机_第5张图片
  3. 这也说明了一个问题:new一个对象时,静态变量赋值和静态语句块会在类的构造方法前执行。

类加载器

  1. 比较两个类对象是否相等,只有加载两个类加载器的完全一样,才有意义;
  2. 如果一个类加载器收到一个类加载请求,它首先会请求委派给父类加载器完成,父类无法完成时,子类加载器才进行加载。

虚拟机字节码执行引擎

Java虚拟机_第6张图片
运行时栈帧结构

  1. 局部变量表:存放方法参数和局部变量。每个变量以slot为单位,slot可以复用Java虚拟机_第7张图片注意,如果没有int a = 0这一行代码,placeholder是不会被回收的,因为如果不加这行代码,就没有任何对局部变量表的读写操作,这个slot就不会被占用。
  2. 操作数栈:方法执行过程中,会有各种字节码出栈入栈
  3. 动态链接:一部分符合引用在类加载时转化为直接引用,这是静态机械;而一部分则是运行时转化为直接应用,这叫动态链接

方法调用和分派

  1. 所有的方法在Class文件中都是一个符合引用,而一部分方法在类加载时就直接解析为直接引用。这种方法必须是“编译时已知,运行时不可变”,就是静态方法和私有方法两大类
  2. 静态分派:依赖静态类型来定位方法执行版本称为静态分派,典型应用是重载。Java虚拟机_第8张图片
    Human是静态类型,后面的Man和Women则是实际类型。
    静态类型在编译器可知,而动态类型则是在运行时才能知道。
  3. 动态分派:运行期间根据实际类型来确定方法执行版本,典型应用是覆盖。Java虚拟机_第9张图片
    结果是
    Java虚拟机

内存模型及线程安全

Java虚拟机_第10张图片
JMM规定所有内存都存储于主内存中,每条线程还有自己的工作内存。
变量的读取、赋值操作必须在工作内存中进行。
内存直接的交互操作,主要有以下8种操作:
Java虚拟机_第11张图片
Java虚拟机
8种操作需要满足以下规则
Java虚拟机_第12张图片


volatile关键字

  1. volatile关键字保证了变量的所有线程的可见性,但并非是线程安全的。
    两种情况下是线程不安全的:
    一,变量依赖于自身(比如i++之类的)
    二,变量依赖于其它变量(比如i=a+3)
  2. volatile禁止语义重排序
  3. volatile的具体实现
    Java虚拟机_第13张图片