Hadoop教程汇总连载之Hadoop基本流程和代码范例

阅读更多
  • 为何有些公司在机器学习业务方面倾向使用 R + Hadoop方案?
  • 你不知道的十个Hadoop的应用场景
  • Hadoop教程:Hadoop的源起和体系架构
  • Hadoop教程:Hadoop核心架构详细解析
  • Hadoop教程:Hadoop集群和网络的基本原理(一)
  • Hadoop教程:Hadoop集群和网络的基本原理(二)
  • Hadoop教程:Hadoop集群和网络的基本原理(三)
  • Hadoop教程:Hadoop基本流程和代码范例
  • Hadoop教程:SQL Server+Hadoop变身大数据解决方案
  • Hadoop教程:谈百度是如何使用hadoop的,并做了哪些改进
  • Hadoop教程:Smartbi在Hadoop大数据分析中的应用
  • Hadoop教程:PayPal的Hadoop迭代式计算框架--Guagua
  • Hadoop教程:8个值得关注的SQL-on-Hadoop框架
  • Hadoop教程:四个方案将OpenStack部署到Hadoop
  • Hadoop教程:Hadoop的技术生态圈
  • Oracle大数据SQL使SQL、Hadoop和NoSQL融合互通
  • Hadoop教程:Hadoop集群环境下的网络架构设计与优化
  • Hadoop教程:9款Hadoop商业发行版的调研报告
  • Hadoop教程:Hadoop分布式环境搭建
  • Hadoop教程:Teradata Aster在Hadoop和R上的进展
  • Hadoop和大数据是合并还是冲突?
  • Hadoop教程:Hadoop数据传输工具Sqoop
  • Hadoop教程:大数据处理平台Hadoop能为企业带来什么?
  • Hadoop教程:Hadoop和大数据在电信业里的典型应用
  • Hadoop教程:Hadoop在大数据中的角色
  • Hadoop教程:Hadoop平台的基本组成与生态系统
  • Hadoop教程:当机器大数据遇见Hadoop
  • Hadoop教程:Hadoop系统分布式存储与并行计算构架
  • Hadoop教程:用外部存储构建Hadoop
  • Hadoop教程:用hadoop计算PI值
  • Hadoop教程:Hadoop扩展过程中的潜在危机

基本流程:

Hadoop教程汇总连载之Hadoop基本流程和代码范例_第1张图片

  

Hadoop教程汇总连载之Hadoop基本流程和代码范例_第2张图片

 一个图片太大了,只好分割成为两部分。根据流程图来说一下具体的一个任务执行的情况。

1. 分布式环境中客户端创建任务并提交。

2. InputFormat做Map前的预处理,主要负责以下工作:

a) 验证输入的格式是否符合JobConfig的输入定义,这个在实现Map和构建Conf的时候就会知道,不定义可以是Writable的任意子类。

b) 将input的文件split为逻辑上的输入InputSplit,其实这就是在上面提到的在分布式文件系统中blocksize是有大小限制的,因此大文件会被划分为多个block。

c) 通过RecordReader来再次处理inputsplit为一组records,输出给Map。(inputsplit只是逻辑切分的第一步,但是如何根据文件中的信息来切分还需要RecordReader来实现,例如最简单的默认方式就是回车换行的切分)

3. RecordReader处理后的结果作为Map的输入,Map执行定义的Map逻辑,输出处理后的key,value对到临时中间文件。

4. Combiner可选择配置,主要作用是在每一个Map执行完分析以后,在本地优先作Reduce的工作,减少在Reduce过程中的数据传输量。

5. Partitioner可选择配置,主要作用是在多个Reduce的情况下,指定Map的结果由某一个Reduce处理,每一个Reduce都会有单独的输出文件。(后面的代码实例中有介绍使用场景)

6. Reduce执行具体的业务逻辑,并且将处理结果输出给OutputFormat。

7. OutputFormat的职责是,验证输出目录是否已经存在,同时验证输出结果类型是否如Config中配置,最后输出Reduce汇总后的结果。

代码范例:

业务场景描述:

可设定输入和输出路径(操作系统的路径非HDFS路径),根据访问日志分析某一个应用访问某一个API的总次数和总流量,统计后分别输出到两个文件中。

仅仅为了测试,因此没有去细分很多类,将所有的类都归并于一个类便于说明问题。

Hadoop教程汇总连载之Hadoop基本流程和代码范例_第3张图片

图4 测试代码类图

LogAnalysiser就是主类,主要负责创建,提交任务,并且输出部分信息。内部的几个子类用途可以参看流程中提到的角色职责。具体的看看几个类和方法的代码片断:

LogAnalysiser::MapClass

public static class MapClass extends MapReduceBase

implements Mapper

 {

public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter)

 throws IOException

&

你可能感兴趣的:(Hadoop,Hadoop教程,Hadoop示例)