- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- Python爬虫实战:全方位爬取知乎学习板块问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫学习开发语言scrapy游戏
1.项目背景与爬取目标知乎是中国最大的知识问答社区,聚集了大量高质量的学习资源和经验分享。爬取知乎“学习”板块的问答数据,可以为学习资料整理、舆情分析、推荐系统开发等提供数据支持。本项目目标:爬取“学习”话题下的热门问答列表抓取每个问答的标题、作者、回答内容、点赞数、评论数等详细信息实现动态加载内容的抓取,包含图片和富文本避免被反爬机制限制,保证数据采集稳定结合数据分析,为后续应用打基础2.知乎“
- End-To-End 之于推荐-kuaishou OneRec 笔记
ASKED_2019
RecSys笔记
核心思想OneRec提出了一种统一的生成式推荐系统架构,打破了传统“召回-粗排-精排”级联式推荐流程,使用单一生成模型同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。OnlineA/BTest表现:模型总观看时长平均观看时长OneRec-1B+IPA+1.68%+6.56%一Input处理Userpositiveactionsequence,将短视频的多模态表征,通过量化的
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 腾讯混元API调用优化实战:用API网关实现流量控制+缓存+监控
1大模型API的调用挑战在接入腾讯混元大模型API的电商推荐系统项目中,我们面临三个核心挑战:突发流量冲击:促销活动期间API调用量激增300%,触发腾讯云限流策略(429错误)响应延迟波动:文本生成长内容时P99延迟高达2.8秒,影响用户体验异常诊断困难:错误日志分散在多台服务器,故障定位平均耗时47分钟传统解决方案如Nginx限流和Redis缓存存在配置分散、维护成本高等问题。API网关作为流
- Python爬取TMDB电影数据:从登录到数据存储的全过程
Eqwaak00
爬虫Pythonpython开发语言人工智能自动化
在当今数据驱动的时代,获取电影数据对于推荐系统、市场分析和个人项目都至关重要。本文将详细介绍如何使用Python构建一个完整的TMDB(TheMovieDatabase)爬虫,从登录认证到数据解析和存储的全过程。(本来博主也想在CSDN里面上白嫖结果没有一篇文章,然后......)1.项目概述TMDB是一个广受欢迎的电影数据库网站,包含了丰富的电影信息、演员数据和用户评分。我们的目标是构建一个爬虫
- 拷贝漫画网页版网址,Copymanga漫画官方网站入口及APP下载
拷贝漫画是一个专为漫画爱好者打造的在线阅读平台,提供海量漫画资源,涵盖日漫、韩漫、美漫、国漫及轻小说等多种类型,满足不同读者的口味需求。平台界面简洁友好,支持多设备同步阅读(如手机、电脑、平板),并提供高清画质与个性化设置,如亮度调节、字体大小、夜间模式等,确保阅读体验舒适。此外,平台具备智能推荐系统,根据用户浏览历史、收藏记录和偏好推荐漫画,帮助用户发现新内容。社区互动功能也十分活跃,用户可分享
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 用 DeepSeek 打造智能高考志愿填报推荐系统
摆烂大大王
deepseek高考deepseek人工智能数据库AIGC
告别选择困难!基于大模型的精准志愿推荐方案一、背景痛点:高考志愿填报的困境每年高考结束后,数百万考生面临共同难题:如何用有限的分数选择最优的院校和专业?传统方式依赖手册翻阅、经验咨询,存在三大痛点:信息过载:全国近3000所高校、上万个专业组合动态复杂:历年分数线波动、招生计划变化匹配低效:个人兴趣与院校资源难以精准对接二、解决方案:DeepSeek-R1智能推荐系统架构系统核心流程
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 用Python爬取Goodreads书评与推荐系统数据
Python爬虫项目
python开发语言爬虫php数据分析
一、项目背景与目标Goodreads是全球最大的图书社交网络,用户可以对读过的图书进行评分、撰写书评并获取推荐。本文目标是:自动化爬取Goodreads某本书的热门短评(reviews);抓取Goodreads自动推荐的相似图书列表(relatedbooks);获取每条评论的:评分、评论者昵称、评论内容;获取推荐图书的:书名、评分、作者、链接等信息;使用现代Python异步技术高效爬取并保存为CS
- 从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统(3085. 成为 K 特殊字符串需要删除的最少字符数)
满分观察网友z
算法解构与应用算法数据库
从“信息茧房”到“内容生态”:一个算法解救了我的推荐系统大家好,我是你们的老朋友,一个在代码世界里摸爬滚打多年的开发者。今天想和大家聊聊一个我最近在项目中遇到的“甜蜜的烦恼”,以及我是如何从一个看似不相关的LeetCode算法题中找到灵感,并最终完美解决问题的。我遇到了什么问题?故事得从我们团队正在迭代的一个核心功能——“个性化内容推荐”说起。最初的版本很简单粗暴:基于用户的历史点击、收藏等行为,
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- Atomgit 客户端实战(十六):元服务开发 —— 构建无界交互的全场景服务网络
逻极
鸿蒙harmonyosautomgit交互harmonyos华为缓存typescript开放原子鸿蒙
Atomgit客户端实战(十六):元服务开发——构建无界交互的全场景服务网络在完成AI推荐系统开发后,Atomgit客户端已具备智能内容分发能力。随着鸿蒙生态的不断演进,**元服务(MetaService)**成为构建全场景服务网络的关键技术。它通过统一的服务描述语言,实现跨设备、跨应用的服务无缝调用,真正践行“服务即入口”的设计理念。本篇将深入元服务开发,讲解如何将客户端核心功能转化为可共享、可
- 彻底告别迷茫,探索机器学习的终极指南
wylee
机器学习人工智能
引言:信息洪流中的灯塔,你是否曾迷失方向?在这个AI技术日新月异的时代,机器学习(MachineLearning,ML)无疑是科技领域最耀眼、最具颠覆性的力量之一。从AlphaGo战胜人类围棋冠军,到智能推荐系统精准预测你的喜好,再到自动驾驶技术悄然改变出行方式,机器学习的力量无处不在。然而,对于无数渴望投身机器学习、或者希望在现有领域深耕的开发者而言,这股信息洪流也带来了前所未有的挑战:知识体系
- AI转型指南
HeartException
人工智能学习机器学习
以下是为计算机学生/在职人员撰写《AI转型指南》的目录框架设计,兼顾系统性与实操性,采用模块化结构便于读者按需学习,前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、AI行业全景扫描(认知篇)技术图谱解构机器学习/深度学习/强化学习的技术边界NLP/CV/语音/推荐系统等细分赛道的就业热度对比传统计算机技能与AI能力的交叉点(如分布式计算、系统
- 使用 Qdrant 实现高效的向量相似性搜索
antja_
算法人工智能机器学习
Qdrant是一个功能强大的向量相似性搜索引擎,为您提供生产就绪的服务以及方便的API,用于存储、搜索和管理点——带有附加有效载荷的向量。Qdrant专注于支持扩展过滤,以满足复杂的搜索需求。技术背景介绍在现代应用中,向量相似性搜索是处理大规模数据的重要工具。例如,在推荐系统中,我们需要根据用户行为找到相似的产品,在搜索引擎中,我们需要根据查询找到相关的内容。Qdrant提供了一种高效且可扩展的解
- 【推荐系统】多任务学习之ESMM模型
山顶夕景
推荐算法深度学习推荐算法深度学习
学习总结ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效果。ESMM解决了真实场景中CVR中的SSB和DS问题。CVR(Conversionrate)转化率:衡量CPA广告效果的指标,用户点击广告到成为一个有效的激活(如注册额或者成为付费用户)的转化率,所
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- Dify文档喂不饱模型?别慌!Embedding 微调就是你的救星!
大模型玩家
embeddingai自然语言处理人工智能语言模型学习程序员
在AI时代,Embedding是NLP任务的基石,直接决定了你的模型是「聪明绝顶」还是「笨拙不堪」。你是否遇到过这些让人头疼的问题:做智能问答时,模型总是答非所问,用户一脸懵圈?做推荐系统时,用户翻遍推荐内容,还是觉得「没一个对味」?做语义搜索时,搜索结果五花八门,相关性差到让人抓狂?这些问题的罪魁祸首,往往就是你的Embedding不够精准!通用Embedding在特定领域常常「水土不服」:在电
- SHAP(夏普利加性解释,Shapley Additive Explanations)
阳光明媚大男孩
人工智能机器学习深度学习
揭秘机器学习模型的“黑盒”:什么是SHAP?在人工智能(AI)时代,机器学习模型被广泛应用于医疗、金融、推荐系统等众多领域。然而,这些模型往往像一个“黑盒”,让人难以理解它们是如何做出预测的。SHAP(夏普利加性解释,ShapleyAdditiveExplanations为我们提供了一把钥匙,帮助揭开模型决策的神秘面纱!这篇科普博文将带你走进SHAP的世界,了解它是什么、如何工作,以及为什么它如此
- Qdrant:从连接到查询的实战指南
Mr_Chenph
AI乱炖向量数据库qdrant1.14.2
Qdrant是近年来非常热门的向量数据库,广泛用于文本搜索、推荐系统、图像相似度匹配等场景。本文将带你从最实用的三个层面入手,快速上手并用好Qdrant的核心能力:✅远程连接配置详解️集合创建参数全面解释查询参数高级用法本例为Qdrant1.14.2(注意!)✅一、远程连接配置详解(QdrantClient)在本地你可以用host和port来连接Qdrant服务,而在生产中,通常使用QdrantC
- Agent 在AI里是什么意思?
薇远镖局
AI人工智能人工智能
Agent的核心特点自主性无需外部指令即可独立运行,根据环境信息调整行为(例如自动驾驶汽车根据路况变道)。感知与反馈通过传感器、数据输入等方式感知环境(如摄像头、文本输入、数据库),并实时更新决策。目标导向围绕明确目标行动(例如推荐系统的目标是最大化用户点击率)。适应性能应对环境变化(如聊天机器人根据用户情绪调整回复)。Agent的常见类型类型特点与例子反应式Agent基于当前环境直接响应(如自动
- 如何使用Python爬虫抓取美团餐厅信息:从数据获取到分析的完整指南
Python爬虫项目
python爬虫开发语言okhttp深度学习
前言随着互联网的发展,线上平台已经成为了我们生活的重要一部分,尤其是在餐饮行业。美团是中国最大的生活服务平台之一,提供了餐饮、外卖、酒店、旅游等多种服务。它的餐厅推荐系统涵盖了众多商户的信息,包括餐厅的评分、评论、菜单等内容。通过对这些数据的抓取与分析,用户可以了解不同餐厅的受欢迎程度、菜品口味,以及顾客的评价等信息,这对餐饮行业的商家和消费者来说都具有非常重要的价值。在本文中,我们将介绍如何使用
- TensorFlow与Pytorch的区别
m0_49517971
pytorch
TensorFlow是一个开源的机器学习库,由Google于2015年发布。它能够进行深度神经网络的训练和推理,具有高效、灵活、跨平台等优点,被广泛应用于图像识别、语音识别、自然语言处理、推荐系统等领域。TensorFlow的基本概念包括:Tensor:Tensor是TensorFlow中的基本数据结构,可以看作是多维数组。TensorFlow中的计算都是基于Tensor进行的。Graph:Gra
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><