【题目】
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2] Output: False Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7] Output: True Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Note:
【题解】
这是一道动态规划的题目,解题思路是参考网上大神而来。
dp[i][j] 表示能够在i到j之间获得的所有数字之和的最大值,目标是第一个人能否在0到n-1之间的所有数字中取得数字之和大于数组所有元素之和的1/2
dp[i][j]表示第一个人能够从i到j之间获取的所有数字之和的最大值,那么dp[i+1][j]表示第二个人能够在i-1到j之间获取的所有数字之和的最大值,dp[i][j-1]表示第二个人能够在i到j-1之间获取的所有数字之和的最大值
sum[i+1][j] - dp[i+1][j]表示第一个人取第i个元素以后,能够在i+1到j之间获取子数组之和的最大值
sum[i][j-1] - dp[i][j-1]标识第一个人取第j个元素以后,能够在i到j-1之间获取子数组之和的最大值
由于dp[i][j]表示每个人都试图获取当前下标i到j之间字数组之和最大值,因此
当第一个人取第i个元素之后,第二个人也在试图获取i+1到j之间的子数组之和最大dp[i+1][j],此时第一个人能够在i到j之间获取的最终子数组之和为
dp[i][j] = nums[j] + sum[i][j-1] - dp[i][j-1]
【代码】
bool PredictTheWinner(vector& nums) {
vector > dp(nums.size(), std::vector(nums.size()));
vector prefix_sum(nums.size()+1);
prefix_sum[0] = 0;
for (int i = 0; i < nums.size(); ++i)
prefix_sum[i+1] = prefix_sum[i] + nums[i];
for (int len = 1; len <= nums.size(); ++len) {
for(int lhs = 0; lhs + len - 1 < nums.size(); ++lhs) {
int rhs = lhs + len - 1;
if (lhs == rhs)
dp[lhs][rhs] = nums[lhs];
else if(lhs == rhs - 1)
dp[lhs][rhs] = std::max(nums[lhs], nums[rhs]);
else {
int dp_left = nums[lhs] + prefix_sum[rhs+1] - prefix_sum[lhs+1] - dp[lhs+1][rhs];
int dp_right = nums[rhs] + prefix_sum[rhs] - prefix_sum[lhs] - dp[lhs][rhs-1];
dp[lhs][rhs] = std::max(dp_left, dp_right);
}
}
}
return 2 * dp[0][nums.size()-1] >= prefix_sum.back();
}